gptools Documentation

Release 0.2.2

Mark Chilenski

1 Overview 3
2 Kernels 5
3 Notes 7
4 Contents 9
4.1 gptools package 9
4.1.1 Subpackages 9
gptools.kernel package 9
4.1.2 Submodules 40
4.1.3 gptools.error_handling module 40
4.1.4 gptools.gaussian_process module 41
4.1.5 gptools.gp_utils module 59
4.1.6 gptools.mean module 60
4.1.7 gptools.utils module 63
4.1.8 Module contents 82
5 Indices and tables 83
Bibliography 85
Python Module Index 87

Source home: https://github.com/markchil/gptools
Releases: https://pypi.python.org/pypi/gptools/
Installation is as simple as:
pip install gptools
A comprehensive demo is provided at https://github.com/markchil/gptools/blob/master/demo/demo.py, with extensive comments showing how the code functions on real data (also hosted on the github). This should be consulted in parallel with this manual.

Overview

gptools is a Python package that provides a convenient, powerful and extensible implementation of Gaussian process regression (GPR). Central to gptools" implementation is support for derivatives and their variances. Furthermore, the implementation supports the incorporation of arbitrary linearly transformed quantities into the GP.
There are two key classes:

- GaussianProcess is the main class to represent a GP.
- Kernel (and its many subclasses) represents a covariance kernel, and must be provided when constructing a GaussianProcess. Separate kernels to describe the underlying signal and the noise are supported.

A third class, JointPrior, allows you to construct a hyperprior of arbitrary complexity to dictate how the hyperparameters are handled.

Creating a Gaussian process is as simple as:

```
import gptools
k = gptools.SquaredExponentialKernel()
gp = gptools.GaussianProcess(k)
```

But, the default bounds on the hyperparameters are very wide and can cause the optimizer/MCMC sampler to fail. So, it is usually a better idea to define the covariance kernel as:

```
k = gptools.SquaredExponentialKernel(param_bounds=[(0, 1e3), (0, 100)])
```

You will have to pick appropriate numbers by inspecting the typical range of your data.
Furthermore, you can include an explicit mean function by passing the appropriate MeanFunction instance into the mи keyword:

```
gp = gptools.GaussianProcess(k, mu=gptools.LinearMeanFunction())
```

This will enable you to perform inference (both empirical and full Bayes) for the hyperparameters of the mean function. Essentially, gptools can perform nonlinear Bayesian regression with a Gaussian process fit to the residuals.
You then add the training data using the add_data () method:

```
gp.add_data(x, y, err_y=stddev_y)
```

Here, err_y is the 1σ uncertainty on the observations y. For exact values, simply omit this keyword. Adding a derivative observation is as simple as specifying the derivative order with the n keyword:

```
gp.add_data(0, 0, n=1)
```

This will force the slope at $x=0$ to be exactly zero. Quantities that represent an arbitrary linear transformation of the "basic" observations can be added by specifying the T keyword:
gp.add_data(x, y, T=T)
This will add the value(s) $y=T Y(x)$ to the training data, where here Y represents the "basic" (untransformed) observations and y represents the transformed observations. This also supports the err_y and n keywords. Here, err_y is the error on the transformed quantity $y . n$ applies to the latent variables $Y(x)$.
Once the GP has been populated with training data, there are two approaches supported to handle the hyperparameters.
The simplest approach is to use an empirical Bayes approach and compute the maximum a posteriori (MAP) estimate. This is accomplished using the optimize_hyperparameters() method of the GaussianProcess instance:

```
gp.optimize_hyperparameters()
```

This will randomly start the optimizer at points distributed according to the hyperprior several times in order to ensure that the global maximum is obtained. If you have a machine with multiple cores, these random starts will be performed in parallel. You can set the number of starts using the random_starts keyword, and you can set the number of processes used using the num_proc keyword.
For a more complete accounting of the uncertainties in the model, you can choose to use a fully Bayesian approach by using Markov chain Monte Carlo (MCMC) techniques to produce samples of the hyperposterior. The samples are produced directly with sample_hyperparameter_posterior(), though it will typically be more convenient to simply call predict () with the use_MCMC keyword set to True.

In order to make predictions, use the predict () method:

```
y_star, err_y_star = gp.predict(x_star)
```

By default, the mean and standard deviation of the GP posterior are returned. To compute only the mean and save some time, set the return_std keyword to False. To make predictions of derivatives, set the n keyword. To make a prediction of a linearly transformed quantity, set the output_transform keyword.
For a convenient wrapper for applying gptools to multivariate data, see profiletools at https://github.com/markchil/profiletools

Kernels

A number of kernels are provided to allow many types of data to be fit:

- DiagonalNoiseKernel implements homoscedastic noise. The noise is tied to a specific derivative order. This allows you to, for instance, have noise on your observations but have noiseless derivative constraints, or to have different noise levels for observations and derivatives. Note that you can also specify potentially heteroscedastic noise explicitly when adding data to the process.
- SquaredExponentialKernel implements the SE kernel which is infinitely differentiable.
- MaternKernel implements the entire Matern class of covariance functions, which are characterized by a hyperparameter ν. A process having the Matern kernel is only mean-square differentiable for derivative order $n<\nu$. Note that this class does not support arbitrary derivatives at this point. If you need this feature, try using MaternKernelArb, but note that this is very slow!
- Matern52Kernel implements a specialized Matern kernel with $\nu=\frac{5}{2}$ which efficiently supports 0th and 1st derivatives.
- RationalQuadraticKernel implements the rational quadratic kernel, which is a scale mixture over SE kernels.
- GibbsKernelld and its subclasses implements the Gibbs kernel, which is a nonstationary form of the SE kernel.
- MaskedKernel creates a kernel that only operates on a subset of dimensions. Use this along with the sum and product operations to create kernels that encode different properties in different dimensions.
- ArbitraryKernel creates a kernel with an arbitrary covariance function and computes the derivatives as needed using mpmath to perform numerical differentiation. Naturally, this is very slow but is useful to let you explore the properties of arbitrary kernels without having to write a complete implementation.
In most cases, these kernels have been constructed in a way to allow inputs of arbitrary dimension. Each dimension has a length scale hyperparameter that can be separately optimized over or held fixed. Arbitrary derivatives with respect to each dimension can be taken, including computation of the covariance for those observations.
Other kernels can be implemented by extending the Kernel class. Furthermore, kernels may be added or multiplied together to yield a new, valid kernel.
gptools has been developed and tested on Python 2.7 and scipy 0.14.0. It may work just as well on other versions, but has not been tested.

If you find this software useful, please be sure to cite it:
M.A. Chilenski et al. 2015 Nucl. Fusion 55023012
http://stacks.iop.org/0029-5515/55/023012

CHAPTER 4

Contents

4.1 gptools package

4.1.1 Subpackages

gptools.kernel package
Submodules
gptools.kernel.core module
Core kernel classes: contains the base Kernel class and helper subclasses.

```
class gptools.kernel.core.Kernel(num_dim=1, num_params=0, initial_params=None,
    fixed_params=None, param_bounds=None,
    param_names=None, enforce_bounds=False, hyper-
    prior=None)
    Bases: object
```

Covariance kernel base class. Not meant to be explicitly instantiated!
Initialize the kernel with the given number of input dimensions.
When implementing an isotropic covariance kernel, the covariance length scales should be the last num_dim elements in params.

Parameters num_dim : positive int
Number of dimensions of the input data. Must be consistent with the X and X star values passed to the GaussianProcess you wish to use the covariance kernel with. Default is 1 .
num_params : Non-negative int
Number of parameters in the model.
initial_params : Array or other Array-like, (num_params,), optional
Initial values to set for the hyperparameters. Default is None, in which case 1 is used for the initial values.
fixed_params : Array or other Array-like of bool, (num_params,), optional

Sets which hyperparameters are considered fixed when optimizing the log likelihood. A True entry corresponds to that element being fixed (where the element ordering is as defined in the class). Default value is None (no hyperparameters are fixed).
param_bounds : list of 2-tuples (num_params,), optional
List of bounds for each of the hyperparameters. Each 2-tuple is of the form (lower, upper). If there is no bound in a given direction, it works best to set it to something big like 1 e 16 . Default is $(0.0,1 \mathrm{e} 16)$ for each hyperparameter. Note that this is overridden by the hyperprior keyword, if present.
param_names : list of str (num_params,), optional
List of labels for the hyperparameters. Default is all empty strings.
enforce_bounds : bool, optional
If True, an attempt to set a hyperparameter outside of its bounds will result in the hyperparameter being set right at its bound. If False, bounds are not enforced inside the kernel. Default is False (do not enforce bounds).
hyperprior : JointPrior instance or list, optional
Joint prior distribution for all hyperparameters. Can either be given as a JointPrior instance or a list of num_params callables or py:class:rv_frozen instances from scipy.stats, in which case a IndependentJointPrior is constructed with these as the independent priors on each hyperparameter. Default is a uniform PDF on all hyperparameters.

Raises ValueError

If num_dim is not a positive integer or the lengths of the input vectors are inconsistent.

GPArgumentError

if fixed_params is passed but initial_params is not.

Attributes

num_free_params	Returns the number of free parameters.
free_param_idxs	Returns the indices of the free parameters in the main arrays of parameters, etc.
free_params	Returns the values of the free hyperparameters.
free_param_bounds	Returns the bounds of the free hyperparameters.
free_param_names	Returns the names of the free hyperparameters.

num_params	(int) Number of parameters.
num_dim	(int) Number of dimensions.
param_names	(list of str, (num_params,)) List of the labels for the hyperparameters.
en- force_bounds	(bool) If True, do not allow hyperparameters to be set outside of their bounds.
params	(Array of float, (num_params,)) Array of parameters.
fixed_params	(Array of bool, (num_params,)) Array of booleans indicated which parameters in params are fixed.
hyperprior	(JointPrior instance) Joint prior distribution for the hyperparameters.
param_bounds	(CombinedBounds) The bounds on the hyperparameters. Actually a getter method with a property decorator.

param_bounds
\qquad ($X i, X j, n i, n j$, hyper_deriv=None, symmetric=False)
Evaluate the covariance between points $X i$ and $X j$ with derivative order $n i, n j$.
Note that this method only returns the covariance - the hyperpriors and potentials stored in this kernel must be applied separately.

Parameters Xi : Matrix or other Array-like, (M, D)
M inputs with dimension D.
$\mathbf{X j}$: Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
nj : Matrix or other Array-like, (M, D)
M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional
The index of the hyperparameter to compute the first derivative with respect to. If None, no derivatives are taken. Default is None (no hyperparameter derivatives).
symmetric : bool, optional
Whether or not the input $X i, X j$ are from a symmetric matrix. Default is False.
Returns Kij : Array, (M,)
Covariances for each of the $M X i, X j$ pairs.

Notes

THIS IS ONLY A METHOD STUB TO DEFINE THE NEEDED CALLING FINGERPRINT!

set_hyperparams (new_params)
Sets the free hyperparameters to the new parameter values in new_params.
Parameters new_params : Array or other Array-like, (len(self.free_params),)
New parameter values, ordered as dictated by the docstring for the class.

num_free_params

Returns the number of free parameters.

free_param_idxs

Returns the indices of the free parameters in the main arrays of parameters, etc.

free_params

Returns the values of the free hyperparameters.
Returns free_params: Array
Array of the free parameters, in order.

free_param_bounds

Returns the bounds of the free hyperparameters.
Returns free_param_bounds: Array
Array of the bounds of the free parameters, in order.

free_param_names

Returns the names of the free hyperparameters.
Returns free_param_names : Array
Array of the names of the free parameters, in order.
\qquad
add (other)
Add two Kernels together.
Parameters other : Kernel
Kernel to be added to this one.
Returns sum : SumKernel
Instance representing the sum of the two kernels.
\qquad (other)
Multiply two Kernels together.
Parameters other : Kernel
Kernel to be multiplied by this one.
Returns prod : ProductKernel
Instance representing the product of the two kernels.
class gptools.kernel.core.BinaryKernel ($k 1, k 2$)
Bases: gptools.kernel.core.Kernel
Abstract class for binary operations on kernels (addition, multiplication, etc.).
Parameters k1, k2 : Kernel instances to be combined

Notes

$k l$ and $k 2$ must have the same number of dimensions.
enforce_bounds
Boolean indicating whether or not the kernel will explicitly enforce the bounds defined by the hyperprior.

fixed_params

free_param_bounds
Returns the bounds of the free hyperparameters.
Returns free_param_bounds : Array
Array of the bounds of the free parameters, in order.

free_param_names

Returns the names of the free hyperparameters.
Returns free_param_names : Array
Array of the names of the free parameters, in order.
params
set_hyperparams (new_params)
Set the (free) hyperparameters.
Parameters new_params : Array or other Array-like

New values of the free parameters.

Raises ValueError

If the length of new_params is not consistent with self. params.
class gptools.kernel.core. SumKernel ($k 1, k 2$)
Bases: gptools.kernel.core.BinaryKernel
The sum of two kernels.
\qquad (*args, **kwargs)
Evaluate the covariance between points $X i$ and $X j$ with derivative order $n i, n j$.
Parameters Xi : Matrix or other Array-like, (M, D)
M inputs with dimension D.
$\mathbf{X j}$: Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
nj : Matrix or other Array-like, (M, D)
M derivative orders for set j.
symmetric : bool, optional
Whether or not the input $X i, X j$ are from a symmetric matrix. Default is False.
Returns Kij : Array, (M,)
Covariances for each of the $M X i, X j$ pairs.
class gptools.kernel.core.ProductKernel ($k 1, k 2$)
Bases: gptools.kernel.core.BinaryKernel
The product of two kernels.
\qquad ($X i, X j, n i, n j$, **kwargs)
Evaluate the covariance between points $X i$ and $X j$ with derivative order $n i, n j$.
Parameters Xi : Matrix or other Array-like, (M, D)
M inputs with dimension D.
$\mathbf{X j}$: Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
nj : Matrix or other Array-like, (M, D)
M derivative orders for set j.
symmetric : bool, optional
Whether or not the input $X i, X j$ are from a symmetric matrix. Default is False.
Returns Kij : Array, (M,)
Covariances for each of the $M X i, X j$ pairs.

Raises NotImplementedError

If the hyper_deriv keyword is given and is not None.

Bases: gptools.kernel.core. Kernel
Abstract class for the common methods in creating kernels that require application of Faa di Bruno's formula.
Implementing classes should provide the following methods:
-_compute_k(self, tau): Should return the value of $k(t a u)$ at the given values of tau, but without multiplying by sigma_f. This is done separately for efficiency.
-_compute_y(self, tau, return_r2l2=False): Should return the "inner form" $y(t a u)$ to use with Faa di Bruno's formula. If return_r2l2 is True, should also return the r2l2 matrix from self._compute_r2l2(tau).
-_compute_dk_dy(self, y, n): Should compute the n 'th derivative of the kernel ' k with respect to y at the locations y.
-_compute_dy_dtau(self, tau, b, r2l2): Should compute the derivatives of y with respect to the elements of tau as indicated in b.
__call__ (Xi, Xj, ni, nj, hyper_deriv=None, symmetric=False $)$
Evaluate the covariance between points $X i$ and $X j$ with derivative order $n i, n j$.
Parameters Xi : Matrix or other Array-like, (M, D)
M inputs with dimension D.
Xj : Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
$\mathbf{n j}$: Matrix or other Array-like, (M, D)
M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional
The index of the hyperparameter to compute the first derivative with respect to. If None, no derivatives are taken. Hyperparameter derivatives are not supported at this point. Default is None.
symmetric : bool
Whether or not the input $X i, X j$ are from a symmetric matrix. Default is False.
Returns Kij: Array, (M,
Covariances for each of the $M X i, X j$ pairs.

Raises NotImplementedError

If the hyper_deriv keyword is not None.
class gptools.kernel.core.ArbitraryKernel (cov_func, num_dim=1, num_proc=0, num_params $=$ None, ${ }^{* *}$ kwargs)
Bases: gptools.kernel.core.Kernel
Covariance kernel from an arbitrary covariance function.

Computes derivatives using mpmath. $\operatorname{diff()}$) and is hence in general much slower than a hard-coded implementation of a given kernel.

Parameters num_dim : positive int
Number of dimensions of the input data. Must be consistent with the X and X star values passed to the GaussianProcess you wish to use the covariance kernel with.
cov_func : callable, takes >=2 args
Covariance function. Must take arrays of $X i$ and $X j$ as the first two arguments. The subsequent (scalar) arguments are the hyperparameters. The number of parameters is found by inspection of cov_func itself, or with the num_params keyword.
num_proc : int or None, optional
Number of procs to use in evaluating covariance derivatives. 0 means to do it in serial, None means to use all available cores. Default is 0 (serial evaluation).
num_params : int or None, optional
Number of hyperparameters. If None, inspection will be used to infer the number of hyperparameters (but will fail if you used clever business with *args, etc.). Default is None (use inspection to find argument count).

**kwargs

All other keyword parameters are passed to Kernel.

Attributes

cov_func	(callable) The covariance function
num_proc	(non-negative int) Number of processors to use in evaluating covariance derivatives. 0 means serial.

_call__ (Xi, Xj, ni, nj, hyper_deriv=None, symmetric=False)
Evaluate the covariance between points $X i$ and $X j$ with derivative order $n i, n j$.
Parameters Xi : Matrix or other Array-like, (M, D)
M inputs with dimension D.
Xj : Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
$\mathbf{n j}$: Matrix or other Array-like, (M, D)
M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional
The index of the hyperparameter to compute the first derivative with respect to. If None, no derivatives are taken. Hyperparameter derivatives are not supported at this point. Default is None.
symmetric : bool, optional
Whether or not the input $X i, X j$ are from a symmetric matrix. Default is False.
Returns Kij : Array, (M,)

Covariances for each of the $M X i, X j$ pairs.

Raises NotImplementedError

If the hyper_deriv keyword is not None.
class gptools.kernel.core.MaskedKernel (base, total_dim=2, mask=[0], scale=None)
Bases: gptools.kernel.core.Kernel
Creates a kernel that is only masked to operate on certain dimensions, or has scaling/shifting.
This can be used, for instance, to put a squared exponential kernel in one direction and a Matern kernel in the other.

Overrides __ getattribute__ () and __setattr__ () to make all setting/accessing go to the base kernel.

Parameters base : Kernel instance
The Kernel to apply in the dimensions specified in mask.
total_dim : int, optional
The total number of dimensions the masked kernel should have. Default is 2 .
mask : list or other array-like, optional
1d list of indices of dimensions X to include when passing to the base kernel. Length must be base.num_dim. Default is [0] (i.e., just pass the first column of X to a univariate base kernel).
scale : list or other array-like, optional
1d list of scale factors to apply to the elements in $X i, X j$. Default is ones. Length must be equal to 2 'base.num_dim'.
__getattribute__(name)
Gets all attributes from the base kernel.
The exceptions are 'base', 'mask', 'maskC', 'num_dim', 'scale' and any special method (i.e., a method/attribute having leading and trailing double underscores), which are taken from MaskedKernel. (name, value)
Sets all attributes in the base kernel.
The exceptions are 'base', 'mask', 'maskC', 'num_dim', 'scale' and any special method (i.e., a method/attribute having leading and trailing double underscores), which are set in MaskedKernel.
call($X i, X j, n i, n j, * * k w a r g s)$
Evaluate the covariance between points $X i$ and $X j$ with derivative order $n i, n j$.
Note that in the argument specifications, D is the total_dim specified in the constructor (i.e., num_dim for the MaskedKernel instance itself).

Parameters Xi : Matrix or other Array-like, (M, D)
M inputs with dimension D.
$\mathbf{X j}$: Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
$\mathbf{n j}$: Matrix or other Array-like, (M, D)
M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional
The index of the hyperparameter to compute the first derivative with respect to. If None, no derivatives are taken. Default is None (no hyperparameter derivatives).
symmetric : bool, optional
Whether or not the input $X i, X j$ are from a symmetric matrix. Default is False.
Returns Kij : Array, (M,)
Covariances for each of the $M X i, X j$ pairs.

gptools.kernel.gibbs module

Provides classes and functions for creating SE kernels with warped length scales.
gptools.kernel.gibbs.tanh_warp_arb $(X, l l, l l, l w, x 0)$
Warps the X coordinate with the tanh model

$$
l=\frac{l_{1}+l_{2}}{2}-\frac{l_{1}-l_{2}}{2} \tanh \frac{x-x_{0}}{l_{w}}
$$

Parameters X : Array, (M,) or scalar float
M locations to evaluate length scale at.
11 : positive float
Small- X saturation value of the length scale.
12 : positive float
Large- X saturation value of the length scale.
$\mathbf{l w}$: positive float
Length scale of the transition between the two length scales.
$\mathbf{x 0}$: float
Location of the center of the transition between the two length scales.
Returns 1: Array, (M,) or scalar float
The value of the length scale at the specified point.
gptools.kernel.gibbs.gauss_warp_arb ($X, l l, l 2, l w, x 0$)
Warps the X coordinate with a Gaussian-shaped divot.

$$
l=l_{1}-\left(l_{1}-l_{2}\right) \exp \left(-4 \ln 2 \frac{\left(X-x_{0}\right)^{2}}{l_{w}^{2}}\right)
$$

Parameters X : Array, $(M$,$) or scalar float$
M locations to evaluate length scale at.
11 : positive float
Global value of the length scale.
12 : positive float
Pedestal value of the length scale.
lw : positive float
Width of the dip.
$\mathbf{x 0}$: float
Location of the center of the dip in length scale.
Returns 1 : Array, $(M$,) or scalar float
The value of the length scale at the specified point.
class gptools.kernel.gibbs.GibbsFunction1dArb (warp_function)

Bases: object

Wrapper class for the Gibbs covariance function, permits the use of arbitrary warping.
The covariance function is given by

$$
k=\left(\frac{2 l(x) l\left(x^{\prime}\right)}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)^{1 / 2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)
$$

Parameters warp_function : callable

The function that warps the length scale as a function of X. Must have the fingerprint ($X i, l l, l 2, l w, x 0$).
\qquad (Xi, Xj, sigmaf, ll, l2, lw, x0)
Evaluate the covariance function between points $X i$ and $X j$.
Parameters $\mathbf{X i}, \mathbf{X j}$: Array, mpf or scalar float
Points to evaluate covariance between. If they are Array, scipy functions are used, otherwise mpmath functions are used.
sigmaf : scalar float
Prefactor on covariance.
11, 12, lw, x0 : scalar floats
Parameters of length scale warping function, passed to warp_function.
Returns k: Array or mpf
Covariance between the given points.
class gptools.kernel.gibbs.GibbsKernelldTanhArb (**kwargs)
Bases: gptools.kernel.core.ArbitraryKernel
Gibbs warped squared exponential covariance function in 1d.
Computes derivatives using mpmath. $\operatorname{diff}()$ and is hence in general much slower than a hard-coded implementation of a given kernel.

The covariance function is given by

$$
k=\left(\frac{2 l(x) l\left(x^{\prime}\right)}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)^{1 / 2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)
$$

Warps the length scale using a hyperbolic tangent:

$$
l=\frac{l_{1}+l_{2}}{2}-\frac{l_{1}-l_{2}}{2} \tanh \frac{x-x_{0}}{l_{w}}
$$

The order of the hyperparameters is:

0	sigmaf	Amplitude of the covariance function
1	11	Small-X saturation value of the length scale.
2	12	Large-X saturation value of the length scale.
3	lw	Length scale of the transition between the two length scales.
4	x0	Location of the center of the transition between the two length scales.

Parameters **kwargs

All parameters are passed to Kernel.
class gptools.kernel.gibbs.GibbsKernelldGaussArb (**kwargs)
Bases: gptools.kernel.core.ArbitraryKernel
Gibbs warped squared exponential covariance function in 1 d .
Computes derivatives using mpmath. $\operatorname{diff}()$ and is hence in general much slower than a hard-coded implementation of a given kernel.
The covariance function is given by

$$
k=\left(\frac{2 l(x) l\left(x^{\prime}\right)}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)^{1 / 2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)
$$

Warps the length scale using a gaussian:

$$
l=l_{1}-\left(l_{1}-l_{2}\right) \exp \left(-4 \ln 2 \frac{\left(X-x_{0}\right)^{2}}{l_{w}^{2}}\right)
$$

The order of the hyperparameters is:

0	sigmaf	Amplitude of the covariance function
1	11	Global value of the length scale.
2	12	Pedestal value of the length scale.
3	lw	Width of the dip.
4	x 0	Location of the center of the dip in length scale.

Parameters **kwargs

All parameters are passed to Kernel.
class gptools.kernel.gibbs.GibbsKernel1d(l_func, num_params=None, **kwargs)

Bases: gptools.kernel.core. Kernel

Univariate Gibbs kernel with arbitrary length scale warping for low derivatives.
The covariance function is given by

$$
k=\left(\frac{2 l(x) l\left(x^{\prime}\right)}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)^{1 / 2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)
$$

The derivatives are hard-coded using expressions obtained from Mathematica.
Parameters l_func : callable
Function that dictates the length scale warping and its derivative. Must have fingerprint $(x, n, p 1, p 2, \ldots)$ where $p 1$ is element one of the kernel's parameters (i.e., element zero is skipped).
num_params : int, optional

The number of parameters of the length scale function. If not passed, introspection will be used to determine this. This will fail if you have used the *args syntax in your function definition. This count should include sigma_f, even though it is not passed to the length scale function.
**kwargs
All remaining arguments are passed to Kernel.
__call__ (Xi, Xj, ni, nj, hyper_deriv=None, symmetric=False)
Evaluate the covariance between points $X i$ and $X j$ with derivative order $n i, n j$.
Parameters Xi : Matrix or other Array-like, (M, D)
M inputs with dimension D.
$\mathbf{X j}$: Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
$\mathbf{n j}$: Matrix or other Array-like, (M, D)
M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional
The index of the hyperparameter to compute the first derivative with respect to. If None, no derivatives are taken. Hyperparameter derivatives are not supported at this point. Default is None.
symmetric : bool, optional
Whether or not the input $X i, X j$ are from a symmetric matrix. Default is False.
Returns Kij: Array, (M,)
Covariances for each of the $M X i, X j$ pairs.

Raises NotImplementedError

If the hyper_deriv keyword is not None.
gptools.kernel.gibbs.tanh_warp ($x, n, l l, l 2, l w, x 0$)
Implements a tanh warping function and its derivative.

$$
l=\frac{l_{1}+l_{2}}{2}-\frac{l_{1}-l_{2}}{2} \tanh \frac{x-x_{0}}{l_{w}}
$$

Parameters \mathbf{x} : float or array of float
Locations to evaluate the function at.
\mathbf{n} : int
Derivative order to take. Used for ALL of the points.
11 : positive float
Left saturation value.
12 : positive float
Right saturation value.
$\mathbf{l w}$: positive float

Transition width.
$\mathbf{x 0}$: float
Transition location.
Returns 1: float or array
Warped length scale at the given locations.

Raises NotImplementedError

$$
\text { If } n>1
$$

class gptools.kernel.gibbs.GibbsKernelldTanh (**kwargs)
Bases: gptools.kernel.gibbs.GibbsKernelld
Gibbs warped squared exponential covariance function in 1 d .
Uses hard-coded implementation up to first derivatives.
The covariance function is given by

$$
k=\left(\frac{2 l(x) l\left(x^{\prime}\right)}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)^{1 / 2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)
$$

Warps the length scale using a hyperbolic tangent:

$$
l=\frac{l_{1}+l_{2}}{2}-\frac{l_{1}-l_{2}}{2} \tanh \frac{x-x_{0}}{l_{w}}
$$

The order of the hyperparameters is:

0	sigmaf	Amplitude of the covariance function
1	11	Small-X saturation value of the length scale.
2	12	Large-X saturation value of the length scale.
3	lw	Length scale of the transition between the two length scales.
4	x 0	Location of the center of the transition between the two length scales.

Parameters **kwargs

All parameters are passed to Kernel.
gptools.kernel.gibbs.double_tanh_warp (x, n, lcore, lmid, ledge, la, $l b, x a, x b$)
Implements a sum-of-tanh warping function and its derivative.

$$
l=a \tanh \frac{x-x_{a}}{l_{a}}+b \tanh \frac{x-x_{b}}{l_{b}}
$$

Parameters \mathbf{x} : float or array of float
Locations to evaluate the function at.
\mathbf{n} : int
Derivative order to take. Used for ALL of the points.
lcore : float
Core length scale.
Imid : float
Intermediate length scale.
ledge : float

Edge length scale.
la: positive float
Transition of first tanh.
lb: positive float
Transition of second tanh.
xa : float
Transition of first tanh.
$\mathbf{x b}$: float
Transition of second tanh.
Returns 1 : float or array
Warped length scale at the given locations.

Raises NotImplementedError

If $n>1$.
class gptools.kernel.gibbs.GibbsKernelldDoubleTanh (**kwargs)
Bases: gptools.kernel.gibbs.GibbsKernelld
Gibbs warped squared exponential covariance function in 1d.
Uses hard-coded implementation up to first derivatives.
The covariance function is given by

$$
k=\left(\frac{2 l(x) l\left(x^{\prime}\right)}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)^{1 / 2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)
$$

Warps the length scale using two hyperbolic tangents:

$$
l=a \tanh \frac{x-x_{a}}{l_{a}}+b \tanh \frac{x-x_{b}}{l_{b}}
$$

The order of the hyperparameters is:

0	sigmaf	Amplitude of the covariance function
1	lcore	Core length scale
2	lmid	Intermediate length scale
3	ledge	Edge length scale
4	la	Width of first tanh
5	lb	Width of second tanh
6	xa	Center of first tanh
7	xb	Center of second tanh

Parameters **kwargs

All parameters are passed to Kernel.
gptools.kernel.gibbs.cubic_bucket_warp $(x, n, l l, l 2, l 3, x 0, w 1, w 2, w 3)$
Warps the length scale with a piecewise cubic "bucket" shape.
Parameters \mathbf{x} : float or array-like of float
Locations to evaluate length scale at.
\mathbf{n} : non-negative int
Derivative order to evaluate. Only first derivatives are supported.
11 : positive float
Length scale to the left of the bucket.
12 : positive float
Length scale in the bucket.
13 : positive float
Length scale to the right of the bucket.
$\mathbf{x 0}$: float
Location of the center of the bucket.
w1 : positive float
Width of the left side cubic section.
w2 : positive float
Width of the bucket.
w3 : positive float
Width of the right side cubic section.
class gptools.kernel.gibbs.GibbsKernel1dCubicBucket (**kwargs)
Bases: gptools.kernel.gibbs.GibbsKernelld
Gibbs warped squared exponential covariance function in 1d.
Uses hard-coded implementation up to first derivatives.
The covariance function is given by

$$
k=\left(\frac{2 l(x) l\left(x^{\prime}\right)}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)^{1 / 2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)
$$

Warps the length scale using a "bucket" function with cubic joins.
The order of the hyperparameters is:

0	sigmaf	Amplitude of the covariance function
1	11	Length scale to the left of the bucket.
2	12	Length scale in the bucket.
3	13	Length scale to the right of the bucket.
4	x 0	Location of the center of the bucket.
5	w1	Width of the left side cubic section.
6	w2	Width of the bucket.
7	w3	Width of the right side cubic section.

Parameters **kwargs

All parameters are passed to Kernel.
gptools.kernel.gibbs.quintic_bucket_warp ($x, n, l 1, l 2, l 3, x 0, w 1, w 2, w 3$) Warps the length scale with a piecewise quintic "bucket" shape.

Parameters \mathbf{x} : float or array-like of float

Locations to evaluate length scale at.
\mathbf{n} : non-negative int
Derivative order to evaluate. Only first derivatives are supported.
11 : positive float
Length scale to the left of the bucket.
12 : positive float
Length scale in the bucket.
13 : positive float
Length scale to the right of the bucket.
$\mathbf{x 0}$: float
Location of the center of the bucket.
w1 : positive float
Width of the left side quintic section.
w2 : positive float
Width of the bucket.
w3 : positive float
Width of the right side quintic section.
class gptools.kernel.gibbs.GibbsKernelldQuinticBucket (**kwargs)
Bases: gptools.kernel.gibbs.GibbsKernelld
Gibbs warped squared exponential covariance function in 1d.
Uses hard-coded implementation up to first derivatives.
The covariance function is given by

$$
k=\left(\frac{2 l(x) l\left(x^{\prime}\right)}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)^{1 / 2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)
$$

Warps the length scale using a "bucket" function with quintic joins.
The order of the hyperparameters is:

0	sigmaf	Amplitude of the covariance function
1	11	Length scale to the left of the bucket.
2	12	Length scale in the bucket.
3	13	Length scale to the right of the bucket.
4	x 0	Location of the center of the bucket.
5	w1	Width of the left side quintic section.
6	w2	Width of the bucket.
7	w3	Width of the right side quintic section.

Parameters **kwargs

All parameters are passed to Kernel.
gptools.kernel.gibbs.exp_gauss_warp $(X, n, l 0, * m s b)$
Length scale function which is an exponential of a sum of Gaussians.

The centers and widths of the Gaussians are free parameters.
The length scale function is given by

$$
l=l_{0} \exp \left(\sum_{i=1}^{N} e t a_{i} \exp (-\right.
$$

rac $\left\{\left(x-m u _i\right)^{\wedge} 2\right\}\{2$ sigma_i^2 $\}$ ight $)$ ight $)$
The number of parameters is equal to the three times the number of Gaussians plus 1 (for l_{0}). This function is inspired by what Gibbs used in his PhD thesis.

Parameters X : 1d or 2d array of float
The points to evaluate the function at. If 2 d , it should only have one column (but this is not checked to save time).
n [int] The derivative order to compute. Used for all X.
10 [float] The covariance length scale at the edges of the domain.
*msb [floats] Means, standard deviations and weights for each Gaussian, in that order.
class gptools.kernel.gibbs.GibbsKernelldExpGauss ($n _$gaussians, **kwargs)
Bases: gptools.kernel.gibbs.GibbsKernelld
Gibbs warped squared exponential covariance function in 1 d .
Uses hard-coded implementation up to first derivatives.
The covariance function is given by

$$
k=\left(\frac{2 l(x) l\left(x^{\prime}\right)}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)^{1 / 2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)
$$

Warps the length scale using an exponential of Gaussian basis functions.
The order of the hyperparameters is:

0	sigmaf	Amplitude of the covariance function.
1	10	Length far away from the Gaussians.
2	mu1	Mean of first Gaussian.
3	mu2	And so on for all Gaussians...
4	sigma1	Width of first Gaussian.
5	sigma2	And so on for all Gaussians...
6	beta1	Amplitude of first Gaussian.
7	beta2	And so on for all Gaussians...

Parameters n_gaussians : int
The number of Gaussian basis functions to use.
**kwargs
All keywords are passed to Kernel.
class gptools.kernel.gibbs.BSplineWarp ($k=3$)
Bases: ob ject
Length scale function which is a B-spline.
The degree is fixed at creation, the knot locations and coefficients are free parameters.

Parameters k: int, optional
The polynomial degree to use. Default is 3 (cubic).
call ($X, n, *_{t} C$)
Evaluate the length scale function with the given knots and coefficients.
If X is $2 d$, uses the first column.
Parameters \mathbf{X} : array of float, $(N$,
The points to evaluate the length scale function at.
\mathbf{n} : int
The derivative order to compute.

* $\mathbf{t C}: 2 M+k-1$ floats

The M knots followed by the $M+k-1$ coefficients to use.
class gptools.kernel.gibbs.GibbsKernel1dBSpline ($n t, k=3, * * k w a r g s$)
Bases: gptools.kernel.gibbs.GibbsKernelld
Gibbs warped squared exponential covariance function in 1d.
Uses hard-coded implementation up to first derivatives.
The covariance function is given by

$$
k=\left(\frac{2 l(x) l\left(x^{\prime}\right)}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)^{1 / 2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)
$$

Warps the length scale using a B-spline with free knots but fixed order.
You should always put fixed boundary knots at or beyond the edge of your domain, otherwise the length scale will go to zero. You should always use hyperpriors which keep the coefficients positive, otherwise the length scale can go to zero/be negative.

The order of the hyperparameters is:

0	sigmaf	Amplitude of the covariance function.
1	t 1	First knot locations.
2	t 2	And so on for all $n t$ knots...
3	C 1	First coefficient.
4	C 2	And so on for all $n t+k-1$ coefficients...

Parameters nt : int

Number of knots to use. Should be at least two (at the edges of the domain of interest).
\mathbf{k} : int, optional
The polynomial degree to use. Default is 3 (cubic).
**kwargs
All keywords are passed to Kernel.

```
class gptools.kernel.gibbs.GPWarp (npts, k=None)
```

Bases: object
Length scale function which is a Gaussian process.
Parameters npts : int

The number of points the GP's value will be specified on.
\mathbf{k} : Kernel instance, optional
The covariance kernel to use for the GP. The default is to use a SquaredExponentialKernel with fixed σ_{f} (since it does not matter here) and broad bounds on l_{1}.
\qquad
Evaluate the length scale.
Parameters \mathbf{X} : array of float
The points to evaluate the length scale at.
\mathbf{n} : int
The order of derivative to compute.
*hpXy : floats
The free hyperparameters of the GP, then the points to set the value at, then the values to use.

```
class gptools.kernel.gibbs.GibbsKernelldGP (npts, k=None, **kwargs)
```

Bases: gptools.kernel.gibbs.GibbsKernelld
Gibbs warped squared exponential covariance function in 1d.
Uses hard-coded implementation up to first derivatives.
The covariance function is given by

$$
k=\left(\frac{2 l(x) l\left(x^{\prime}\right)}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)^{1 / 2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{l^{2}(x)+l^{2}\left(x^{\prime}\right)}\right)
$$

Warps the length scale using a Gaussian process which interpolates the values specified at a set number of points. Both the values and the locations of the points can be treated as free parameters.

You should try to pick a hyperprior which keeps the outer points close to the edge of the domain, as otherwise the Gaussian process will try to go to zero there. You should put a hyperprior on the values at the points which keeps them positive, otherwise unphysical length scales will result.
The order of the hyperparameters is:

0	sigmaf	Amplitude of the covariance function.
1	hp1	First hyperparameter of the covariance function.
2	hp 2	And so on for all free hyperparameters...
3	x 1	Location of the first point to set the value at.
4	x 2	And so on for all points the value is set at...
5	y 1	Length scale at the first point.
6	y 2	And so on for all points the value is set at...

Parameters npts : int
Number of points to use.
k: Kernel instance, optional
The covariance kernel to use for the GP. The default is to use a SquaredExponentialKernel with fixed σ_{f} (since it does not matter here) and broad bounds on l_{1}.
**kwargs

All keywords are passed to Kernel.

gptools.kernel.matern module

Provides the MaternKernel class which implements the anisotropic Matern kernel.
gptools.kernel.matern.matern_function (Xi, Xj, *args)
Matern covariance function of arbitrary dimension, for use with ArbitraryKernel.
The Matern kernel has the following hyperparameters, always referenced in the order listed:

0	sigma	prefactor
1	nu	order of kernel
2	11	length scale for the first dimension
3	12	...and so on for all dimensions

The kernel is defined as:

$$
k_{M}=\sigma^{2} \frac{2^{1-\nu}}{\Gamma(\nu)}\left(\sqrt{2 \nu \sum_{i}\left(\frac{\tau_{i}^{2}}{l_{i}^{2}}\right)}\right)^{\nu} K_{\nu}\left(\sqrt{2 \nu \sum_{i}\left(\frac{\tau_{i}^{2}}{l_{i}^{2}}\right)}\right)
$$

Parameters Xi, Xj: Array, mpf, tuple or scalar float
Points to evaluate the covariance between. If they are Array, scipy functions are used, otherwise mpmath functions are used.

*args

Remaining arguments are the 2+num_dim hyperparameters as defined above.
class gptools.kernel.matern.MaternKernelArb (**kwargs)
Bases: gptools.kernel.core.ArbitraryKernel
Matern covariance kernel. Supports arbitrary derivatives. Treats order as a hyperparameter.
This version of the Matern kernel is painfully slow, but uses mpmath to ensure the derivatives are computed properly, since there may be issues with the regular MaternKernel.
The Matern kernel has the following hyperparameters, always referenced in the order listed:

0	sigma	prefactor
1	nu	order of kernel
2	11	length scale for the first dimension
3	12	...and so on for all dimensions

The kernel is defined as:

$$
k_{M}=\sigma^{2} \frac{2^{1-\nu}}{\Gamma(\nu)}\left(\sqrt{2 \nu \sum_{i}\left(\frac{\tau_{i}^{2}}{l_{i}^{2}}\right)}\right)^{\nu} K_{\nu}\left(\sqrt{2 \nu \sum_{i}\left(\frac{\tau_{i}^{2}}{l_{i}^{2}}\right)}\right)
$$

Parameters **kwargs

All keyword parameters are passed to ArbitraryKernel.
nu
Returns the value of the order ν.
class gptools.kernel.matern. MaternKernel1d(**kwargs)
Bases: gptools.kernel.core.Kernel
Matern covariance kernel. Only for univariate data. Only supports up to first derivatives. Treats order as a hyperparameter.

The Matern kernel has the following hyperparameters, always referenced in the order listed:

0	sigma	prefactor
1	nu	order of kernel
2	11	length scale

The kernel is defined as:

$$
k_{M}=\sigma^{2} \frac{2^{1-\nu}}{\Gamma(\nu)}\left(\sqrt{2 \nu\left(\frac{\tau^{2}}{l_{1}^{2}}\right)}\right)^{\nu} K_{\nu}\left(\sqrt{2 \nu\left(\frac{\tau^{2}}{l_{1}^{2}}\right)}\right)
$$

where $\tau=X_{i}-X_{j}$.
Note that the expressions for the derivatives break down for $\nu<1$.
Parameters **kwargs
All keyword parameters are passed to Kernel.
\ldots _call__ (Xi, Xj, ni, nj, hyper_deriv=None, symmetric=False)
Evaluate the covariance between points $X i$ and $X j$ with derivative order $n i, n j$.
Parameters Xi : Matrix or other Array-like, (M, D)
M inputs with dimension D.
$\mathbf{X j}$: Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
$\mathbf{n j}$: Matrix or other Array-like, (M, D)
M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional
The index of the hyperparameter to compute the first derivative with respect to. If None, no derivatives are taken. Hyperparameter derivatives are not supported at this point. Default is None.
symmetric : bool, optional
Whether or not the input $X i, X j$ are from a symmetric matrix. Default is False.

Returns Kij: Array, (M,)

Covariances for each of the $M X i, X j$ pairs.

Raises NotImplementedError

If the hyper_deriv keyword is not None.
class gptools.kernel.matern.MaternKernel (num_dim=1, **kwargs)
Bases: gptools.kernel.core. ChainRuleKernel
Matern covariance kernel. Supports arbitrary derivatives. Treats order as a hyperparameter.
The Matern kernel has the following hyperparameters, always referenced in the order listed:

0	sigma	prefactor
1	nu	order of kernel
2	11	length scale for the first dimension
3	12	...and so on for all dimensions

The kernel is defined as:

$$
k_{M}=\sigma^{2} \frac{2^{1-\nu}}{\Gamma(\nu)}\left(\sqrt{2 \nu \sum_{i}\left(\frac{\tau_{i}^{2}}{l_{i}^{2}}\right)}\right)^{\nu} K_{\nu}\left(\sqrt{2 \nu \sum_{i}\left(\frac{\tau_{i}^{2}}{l_{i}^{2}}\right)}\right)
$$

Parameters num_dim : int
Number of dimensions of the input data. Must be consistent with the X and Xstar values passed to the GaussianProcess you wish to use the covariance kernel with.

**kwargs

All keyword parameters are passed to ChainRuleKernel.

Raises ValueError

If num_dim is not a positive integer or the lengths of the input vectors are inconsistent.

GPArgumentError

If fixed_params is passed but initial_params is not.
nu
Returns the value of the order ν.
class gptools.kernel.matern.Matern52Kernel (num_dim=1, **kwargs)
Bases: gptools.kernel.core.Kernel
Matern 5/2 covariance kernel. Supports only 0th and 1st derivatives and is fixed at nu=5/2. Because of these limitations, it is quite a bit faster than the more general Matern kernels.
The Matern52 kernel has the following hyperparameters, always referenced in the order listed:

0	sigma	prefactor
1	11	length scale for the first dimension
2	12	...and so on for all dimensions

The kernel is defined as:

$$
\begin{array}{r}
k_{M}\left(x, x^{\prime}\right)=\sigma^{2}\left(1+\sqrt{5 r^{2}}+\frac{5}{3} r^{2}\right) \exp \left(-\sqrt{5 r^{2}}\right) \\
r^{2}=\sum_{d=1}^{D} \frac{\left(x_{d}-x_{d}^{\prime}\right)^{2}}{l_{d}^{2}}
\end{array}
$$

Parameters num_dim : int
Number of dimensions of the input data. Must be consistent with the X and Xstar values passed to the GaussianProcess you wish to use the covariance kernel with.
**kwargs
All keyword parameters are passed to Kernel.

Raises ValueError

If num_dim is not a positive integer or the lengths of the input vectors are inconsistent.

GPArgumentError

If fixed_params is passed but initial_params is not.
\ldots _call__ (Xi, Xj, ni, nj, hyper_deriv=None, symmetric=False)
Evaluate the covariance between points $X i$ and $X j$ with derivative order $n i, n j$.
Parameters Xi : Matrix or other Array-like, (M, D)
M inputs with dimension D.
$\mathbf{X j}$: Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
$\mathbf{n j}$: Matrix or other Array-like, (M, D)
M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional
The index of the hyperparameter to compute the first derivative with respect to. If None, no derivatives are taken. Hyperparameter derivatives are not supported at this point. Default is None.
symmetric : bool
Whether or not the input $X i, X j$ are from a symmetric matrix. Default is False.
Returns Kij: Array, (M,)
Covariances for each of the $M X i, X j$ pairs.

Raises NotImplementedError

If the hyper_deriv keyword is not None.
gptools.kernel.noise module

Provides classes for implementing uncorrelated noise.

```
class gptools.kernel.noise.DiagonalNoiseKernel(num_dim=1, initial_noise=None,
                                    fixed_noise=False, noise_bound=None,
                                    n=0, hyperprior=None)
```

Bases: gptools.kernel.core.Kernel
Kernel that has constant, independent noise (i.e., a diagonal kernel).
Parameters num_dim : positive int
Number of dimensions of the input data.
initial_noise : float, optional
Initial value for the noise standard deviation. Default value is None (noise gets set to 1).
fixed_noise : bool, optional
Whether or not the noise is taken to be fixed when optimizing the log likelihood. Default is False (noise is not fixed).
noise_bound : 2-tuple, optional
The bounds for the noise when optimizing the log likelihood with scipy.optimize.minimize(). Must be of the form (lower, upper). Set a given entry to None to put no bound on that side. Default is None, which gets set to (0 , None).
\mathbf{n} : non-negative int or tuple of non-negative ints with length equal to num_dim, optional

Indicates which derivative this noise is with respect to. Default is 0 (noise applies to value).
hyperprior : callable, optional
Function that returns the prior log-density for a possible value of noise when called. Must also have an attribute called bounds that is the bounds on the noise and a method called random_draw () that yields a random draw. Default behavior is to assign a uniform prior.
\qquad (Xi, Xj, ni, nj, hyper_deriv=None, symmetric=False)
Evaluate the covariance between points $X i$ and $X j$ with derivative order $n i, n j$.
Parameters Xi : Matrix or other Array-like, (M, D)
M inputs with dimension D.
Xj : Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
nj : Matrix or other Array-like, (M, D)
M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional
The index of the hyperparameter to compute the first derivative with respect to. Since this kernel only has one hyperparameter, 0 is the only valid value. If None, no derivatives are taken. Default is None (no hyperparameter derivatives).
symmetric : bool, optional
Whether or not the input $X i, X j$ are from a symmetric matrix. Default is False.
Returns Kij: Array, (M,)
Covariances for each of the $M X i, X j$ pairs.
class gptools.kernel.noise. ZeroKernel (num_dim=1)
Bases: gptools.kernel.noise.DiagonalNoiseKernel
Kernel that always evaluates to zero, used as the default noise kernel.
Parameters num_dim : positive int
The number of dimensions of the inputs.
__call__ (Xi, Xj, ni, nj, hyper_deriv=None, symmetric=False)
Return zeros the same length as the input Xi.
Ignores all other arguments.
Parameters Xi : Matrix or other Array-like, (M, D)
M inputs with dimension D.
$\mathbf{X j}$: Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
$\mathbf{n j}$: Matrix or other Array-like, (M, D)
M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional
The index of the hyperparameter to compute the first derivative with respect to. Since this kernel only has one hyperparameter, 0 is the only valid value. If None, no derivatives are taken. Default is None (no hyperparameter derivatives).
symmetric : bool, optional
Whether or not the input $X i, X j$ are from a symmetric matrix. Default is False.
Returns Kij: Array, (M,)
Covariances for each of the $M X i, X j$ pairs.

gptools.kernel.rational_quadratic module

Provides the RationalQuadratickernel class which implements the anisotropic rational quadratic (RQ) kernel.
class gptools.kernel.rational_quadratic.RationalQuadraticKernel(num_dim=1,
**kwargs)
Bases: gptools.kernel.core.ChainRuleKernel
Rational quadratic (RQ) covariance kernel. Supports arbitrary derivatives.
The RQ kernel has the following hyperparameters, always referenced in the order listed:

0	sigma	prefactor.
1	alpha	order of kernel.
2	11	length scale for the first dimension.
3	12	...and so on for all dimensions.

The kernel is defined as:

$$
k_{R Q}=\sigma^{2}\left(1+\frac{1}{2 \alpha} \sum_{i} \frac{\tau_{i}^{2}}{l_{i}^{2}}\right)^{-\alpha}
$$

Parameters num_dim : int

Number of dimensions of the input data. Must be consistent with the X and Xstar values passed to the GaussianProcess you wish to use the covariance kernel with.
**kwargs
All keyword parameters are passed to ChainRuleKernel.

Raises ValueError

If num_dim is not a positive integer or the lengths of the input vectors are inconsistent.

GPArgumentError

If fixed_params is passed but initial_params is not.
gptools.kernel.squared_exponential module

Provides the SquaredExponentialKernel class that implements the anisotropic SE kernel.
class gptools.kernel.squared_exponential.SquaredExponentialKernel(num_dim=1,
**kwargs)
Bases: gptools.kernel.core.Kernel
Squared exponential covariance kernel. Supports arbitrary derivatives.
Supports derivatives with respect to the hyperparameters.
The squared exponential has the following hyperparameters, always referenced in the order listed:

0	sigma	prefactor on the SE
1	11	length scale for the first dimension
2	12	...and so on for all dimensions

The kernel is defined as:

$$
k_{S E}=\sigma^{2} \exp \left(-\frac{1}{2} \sum_{i} \frac{\tau_{i}^{2}}{l_{i}^{2}}\right)
$$

Parameters num_dim : int
Number of dimensions of the input data. Must be consistent with the X and Xstar values passed to the GaussianProcess you wish to use the covariance kernel with.
**kwargs
All keyword parameters are passed to Kernel.

Raises ValueError

If num_dim is not a positive integer or the lengths of the input vectors are inconsistent.

GPArgumentError

If fixed_params is passed but initial_params is not.
__call__(Xi, Xj, ni, nj, hyper_deriv=None, symmetric=False)
Evaluate the covariance between points $X i$ and $X j$ with derivative order $n i, n j$.
Parameters Xi : Matrix or other Array-like, (M, D)
M inputs with dimension D.
$\mathbf{X j}$: Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
nj : Matrix or other Array-like, (M, D)
M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional
The index of the hyperparameter to compute the first derivative with respect to. If None, no derivatives are taken. Default is None (no hyperparameter derivatives). Hyperparameter derivatives are not support for $n>0$ at this time.
symmetric : bool, optional
Whether or not the input $X i, X j$ are from a symmetric matrix. Default is False.
Returns Kij: Array, (M,)
Covariances for each of the $M X i, X j$ pairs.

gptools.kernel.warping module

Classes and functions to warp inputs to kernels to enable fitting of nonstationary data. Note that this accomplishes a similar goal as the Gibbs kernel (which is a nonstationary version of the squared exponential kernel), but with the difference that the warpings in this module can be applied to any existing kernel. Furthermore, whereas the Gibbs kernel implements nonstationarity by changing the length scale of the covariance function, the warpings in the module act by transforming the input values directly.

The module contains two core classes that work together. WarpingFunction gives you a way to wrap a given function in a way that allows you to optimize/integrate over the hyperparameters that describe the warping. WarpedKernel is an extension of the Kernel base class and is how you apply a WarpingFunction to whatever kernel you want to warp.
Two useful warpings have been implemented at this point: BetaWarpedKernel warps the inputs using the CDF of the beta distribution (i.e., the regularized incomplete beta function). This requires that the starting inputs be constrained to the unit hypercube $[0,1]$. In order to get arbitrary data to this form, LinearWarpedKernel allows you to apply a linear transformation based on the known bounds of your data.

So, for example, to make a beta-warped squared exponential kernel, you simply type:

```
k_SE = gptools.SquaredExponentialKernel()
k_SE_beta = gptools.BetaWarpedKernel(k_SE)
```

Furthermore, if your inputs X are not confined to the unit hypercube $[0,1]$, you should use a linear transformation to map them to it:

```
k_SE_beta_unit = gptools.LinearWarpedKernel(k_SE_beta, X.min(axis=0), X.max(axis=0))
```

class gptools.kernel.warping.WarpingFunction(fun, num_dim=1, num_params=None, initial_params $=$ None, \quad fixed_params $=$ None, param_bounds=None, param_names=None, enforce_bounds=False, hyperprior=None)
Bases: object
Wrapper to interface a function with WarpedKernel.
This lets you define a simple function $f u n(X, d, n, p 1, p 2, \ldots)$ that operates on one dimension of X at a time and has several hyperparameters.

Parameters fun : callable
Must have fingerprint $\operatorname{fun}(X, d, n, p l, p 2, \ldots)$ where X is an array of length M, d is the index of the dimension X is from, n is a non-negative integer representing the order of derivative to take and $p 1, p 2, \ldots$ are the parameters of the warping. Note that this form assumes that the warping is applied independently to each dimension.
num_dim : positive int, optional
Number of dimensions of the input data. Must be consistent with the X and Xstar values passed to the GaussianProcess you wish to use the warping function with. Default is 1 .
num_params : Non-negative int, optional
Number of parameters in the model. Default is to determine the number of parameters by inspection of fun or the other arguments provided.
initial_params : Array, (num_params,), optional
Initial values to set for the hyperparameters. Default is None, in which case 1 is used for the initial values.
fixed_params : Array of bool, (num_params,), optional
Sets which hyperparameters are considered fixed when optimizing the log likelihood. A True entry corresponds to that element being fixed (where the element ordering is as defined in the class). Default value is None (no hyperparameters are fixed).
param_bounds : list of 2-tuples (num_params,), optional
List of bounds for each of the hyperparameters. Each 2-tuple is of the form (lower', upper). If there is no bound in a given direction, it works best to set it to something big like 1e16. Default is $(0.0,1 \mathrm{e} 16)$ for each hyperparameter. Note that this is overridden by the hyperprior keyword, if present.
param_names : list of str (num_params,), optional
List of labels for the hyperparameters. Default is all empty strings.
enforce_bounds : bool, optional
If True, an attempt to set a hyperparameter outside of its bounds will result in the hyperparameter being set right at its bound. If False, bounds are not enforced inside the kernel. Default is False (do not enforce bounds).
hyperprior : JointPrior instance or list, optional
Joint prior distribution for all hyperparameters. Can either be given as a JointPrior instance or a list of num_params callables or rv_frozen instances from scipy.stats, in which case a IndependentJointPrior is constructed with these as the independent priors on each hyperparameter. Default is a uniform PDF on all hyperparameters.
call (X, d, n)
Evaluate the warping function.
Parameters X : Array, (M,)
M inputs corresponding to dimension d.
d : non-negative int
Index of the dimension that X is from.
\mathbf{n} : non-negative int
Derivative order to compute.

```
param_bounds
set_hyperparams (new_params)
```

Sets the free hyperparameters to the new parameter values in new_params.
Parameters new_params : Array or other Array-like, (len(self.params),
New parameter values, ordered as dictated by the docstring for the class.

num_free_params

Returns the number of free parameters.
free_param_idxs
Returns the indices of the free parameters in the main arrays of parameters, etc.

free_params

Returns the values of the free hyperparameters.
Returns free_params: Array

Array of the free parameters, in order.

free_param_bounds

Returns the bounds of the free hyperparameters.
Returns free_param_bounds : Array
Array of the bounds of the free parameters, in order.

free_param_names

Returns the names of the free hyperparameters.
Returns free_param_names : Array
Array of the names of the free parameters, in order.
gptools.kernel.warping.beta_cdf_warp (X, d, n, *args)
Warp inputs that are confined to the unit hypercube using the regularized incomplete beta function.
Applies separately to each dimension, designed for use with WarpingFunction.
Assumes that your inputs X lie entirely within the unit hypercube $[0,1]$.
Note that you may experience some issues with constraining and computing derivatives at $x=0$ when $\alpha<1$ and at $x=1$ when $\beta<1$. As a workaround, try mapping your data to not touch the boundaries of the unit hypercube.

Parameters X: array, (M,)

M inputs from dimension d.
d : non-negative int
The index (starting from zero) of the dimension to apply the warping to.
\mathbf{n} : non-negative int
The derivative order to compute.
*args : 2N scalars
The remaining parameters to describe the warping, given as scalars. These are given as alpha_i, beta_i for each of the D dimensions. Note that these must ALL be provided for each call.

References

[R1]
gptools.kernel.warping.linear_warp ($X, d, n, * \operatorname{args})$
Warp inputs with a linear transformation.
Applies the warping

$$
w(x)=\frac{x-a}{b-a}
$$

to each dimension. If you set $a=\min (X)$ and $b=\max (X)$ then this is a convenient way to map your inputs to the unit hypercube.

Parameters X: array, (M,)
M inputs from dimension d.
d : non-negative int

The index (starting from zero) of the dimension to apply the warping to.
\mathbf{n} : non-negative int
The derivative order to compute.
*args : 2N scalars
The remaining parameters to describe the warping, given as scalars. These are given as $a_{-} i, b_{-} i$ for each of the D dimensions. Note that these must ALL be provided for each call.
class gptools.kernel.warping.ISplineWarp ($n t, k=3$)
Bases: object
Warps inputs with an I-spline.
Applies the warping

$$
w(x)=\sum_{i=1}^{n t+k-2} C_{i} I_{i, k}(x \mid t)
$$

to each dimension, where C_{i} are the coefficients and $I_{i, k}(x \mid t)$ are the I-spline basis functions with knot grid t.
Parameters nt: int or array of int (D,)
The number of knots. If this is a single int, it is used for all of the dimensions. If it is an array of ints, it is the number of knots for each dimension.
k: int, optional
The polynomial degree of I-spline to use. The same degree is used for all dimensions.
The default is 3 (cubic I-splines).
__call__ ($X, d, n, * \operatorname{args}$)
Evaluate the I-spline warping function.
Parameters X: array, (M,)
M inputs from dimension d.
d: non-negative int
The index (starting from zero) of the dimension to apply the warping to.
n : non-negative int
The derivative order to compute.
*args : scalar flots
The remaining parameters to describe the warping, given as scalars. These are given as the knots followed by the coefficients, for each dimension. Note that these must ALL be provided for each call.

class gptools.kernel.warping. WarpedKernel (k, w)

Bases: gptools.kernel.core.Kernel
Kernel which has had its inputs warped through a basic, elementwise warping function.
In other words, takes $k\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right)$ and turns it into $k\left(w_{1}\left(x_{1}\right), w_{2}\left(x_{2}\right), w_{1}\left(x_{1}^{\prime}\right), w_{2}\left(x_{2}^{\prime}\right)\right)$.
\qquad ($X i, X j, n i, n j$, hyper_deriv=None, symmetric $=$ False $)$
\mathbf{w} _func (X, d, n)
Evaluate the (possibly recursive) warping function and its derivatives.

Parameters X: array, (M,)
The points (from dimension d) to evaluate the warping function at.
d : int
The dimension to warp.
\mathbf{n} : int
The derivative order to compute. So far only 0 and 1 are supported.

```
enforce_bounds
```

Boolean indicating whether or not the kernel will explicitly enforce the bounds defined by the hyperprior.
fixed_params
params
param_names
free_params
free_param_bounds
free_param_names
set_hyperparams (new_params)
Set the (free) hyperparameters.
Parameters new_params : Array or other Array-like
New values of the free parameters.

Raises ValueError

If the length of new_params is not consistent with self. params.
class gptools.kernel.warping.BetaWarpedKernel (k, **w_kwargs)
Bases: gptools.kernel.warping. WarpedKernel
Class to warp any existing Kernel with the beta CDF.
Assumes that your inputs X lie entirely within the unit hypercube [0, 1].
Note that you may experience some issues with constraining and computing derivatives at $x=0$ when $\alpha<1$ and at $x=1$ when $\beta<1$. As a workaround, try mapping your data to not touch the boundaries of the unit hypercube.

Parameters k: Kernel
The Kernel to warp.
**w_kwargs : optional kwargs
All additional kwargs are passed to the constructor of WarpingFunction. If no hyperprior or param_bounds are provided, takes each α, β to follow the log-normal distribution.

References

[R2]
class gptools.kernel.warping.LinearWarpedKernel (k, a, b)
Bases: gptools.kernel.warping. WarpedKernel
Class to warp any existing Kernel with the linear transformation given in Iinear_warp ().
If you set a to be the minimum of your X inputs in each dimension and b to be the maximum then you can use this to map data from an arbitrary domain to the unit hypercube $[0,1]$, as is required for application of the BetaWarpedKernel, for instance.

Parameters k: Kernel
The Kernel to warp.
a : list
The a parameter in the linear warping defined in linear_warp (). This list must have length equal to k.num_dim.
b: list
The b parameter in the linear warping defined in linear_warp(). This list must have length equal to k.num_dim.

```
class gptools.kernel.warping.ISplineWarpedKernel(k,nt,k_deg=3,**w_kwargs)
```

Bases: gptools.kernel.warping. WarpedKernel
Class to warp any existing Kernel with the I-spline transformation given in ISplineWarp ().
Parameters k: Kernel
The Kernel to warp.
$\mathbf{n t}$: int or array of int
The number of knots. If this is a single int, it is used for all of the dimensions. If it is an array of ints, it is the number of knots for each dimension.

k_deg : int, optional

The polynomial degree of I-spline to use. The same degree is used for all dimensions. The default is 3 (cubic I-splines).
**w_kwargs : optional kwargs
All additional keyword arguments are passed to the constructor of WarpingFunction.

Module contents

Subpackage containing a variety of covariance kernels and associated helpers.

4.1.2 Submodules

4.1.3 gptools.error_handling module

Contains exceptions specific to the gptools package.

```
exception gptools.error_handling.GPArgumentError
    Bases: exceptions.Exception
```

Exception class raised when an incorrect combination of keyword arguments is given.

```
exception gptools.error_handling.GPImpossibleParamsError
    Bases: exceptions.Exception
```

Exception class raised when parameters are not possible.

4.1.4 gptools.gaussian_process module

Provides the base GaussianProcess class.
class gptools.gaussian_process.GaussianProcess (k, noise_k=None, $\quad X=$ None, $\quad y=$ None, err_ $y=0, n=0, T=$ None, diag_factor $=100.0$, $m u=$ None, use_hyper_deriv=False, verbose=False)
Bases: object
Gaussian process.
If called with one argument, an untrained Gaussian process is constructed and data must be added with the add_data () method. If called with the optional keywords, the values given are used as the data. It is always possible to add additional data with add_data ().
Note that the attributes have no write protection, but you should always add data with add_data () to ensure internal consistency.

Parameters k: Kernel instance
Kernel instance corresponding to the desired noise-free covariance kernel of the Gaussian process. The noise is handled separately either through specification of err_y, or in a separate kernel. This allows noise-free predictions when needed.
noise_k : Kernel instance
Kernel instance corresponding to the noise portion of the desired covariance kernel of the Gaussian process. Note that you DO NOT need to specify this if the extent of the noise you want to represent is contained in err_y (or if your data are noiseless). Default value is None, which results in the Zerokernel (noise specified elsewhere or not present).
diag_factor : float, optional
Factor of sys.float_info.epsilon which is added to the diagonal of the total K matrix to improve the stability of the Cholesky decomposition. If you are having issues, try increasing this by a factor of 10 at a time. Default is 1 e 2 .
mu: MeanFunction instance
The mean function of the Gaussian process. Default is None (zero mean prior).

NOTE

The following are all passed to add_data (), refer to its docstring.
\mathbf{X} : array, (N, D), optional
M input values of dimension D. Default value is None (no data).
\mathbf{y} : array, (M,), optional
M data target values. Default value is None (no data).
err_y : array, $(M$,$) , optional$
Error (given as standard deviation) in the M training target values. Default value is 0 (noiseless observations).
\mathbf{n} : array, (N, D) or scalar float, optional
Non-negative integer values only. Degree of derivative for each target. If n is a scalar it is taken to be the value for all points in y. Otherwise, the length of n must equal the length of y. Default value is 0 (observation of target value). If non-integer values are passed, they will be silently rounded.
\mathbf{T} : array, (M, N), optional
Linear transformation to get from latent variables to data in the argument y. When T is passed the argument y holds the transformed quantities $y=T Y(X)$ where y are the observed values of the transformed quantities, T is the transformation matrix and $Y(X)$ is the underlying (untransformed) values of the function to be fit that enter into the transformation. When T is M-by- N and y has M elements, X and n will both be N-byD. Default is None (no transformation).
use_hyper_deriv : bool, optional
If True, the elements needed to compute the derivatives of the log-likelihood with respect to the hyperparameters will be computed. Default is False (do not compute these elements). Derivatives with respect to hyperparameters are currently only supported for the squared exponential covariance kernel.
verbose : bool, optional
If True, warnings which are produced internally but are not critical will not be generated. This does not control when a warning happens in a routine which is called, however. Default is False (do not produce warnings).

Raises TypeError

k or noise $_k$ is not an instance of Kernel.

GPArgumentError

Gave X but not y (or vice versa).

ValueError

Training data rejected by add_data().

See also:

add_data Used to process $X, y, e r r_{-} y$ and to add data.

Attributes

num_dim	The number of dimensions of the input data.
hyperprior	Combined hyperprior for the kernel, noise kernel and (if present) mean function.
params	Combined hyperparameters for the kernel, noise kernel and (if present) mean function.
param_bounds	Combined bounds for the hyperparameters for the kernel, noise kernel and (if present) mean function.
param_names	Combined names for the hyperparameters for the kernel, noise kernel and (if present) mean function.
fixed_params	Combined fixed hyperparameter flags for the kernel, noise kernel and (if present) mean function.
free_params	Combined free hyperparameters for the kernel, noise kernel and (if present) mean function.
free_param_bounds	Combined free hyperparameter bounds for the kernel, noise kernel and (if present) mean function.
free_param_names	Combined free hyperparameter names for the kernel, noise kernel and (if present) mean function.

k	(Kernel instance) The non-noise portion of the covariance kernel.
noise_k	(Kernel instance) The noise portion of the covariance kernel.
mu	(MeanFunction instance) Parametric mean function.
X	(array, (M, D)) The M training input values, each of which is of dimension D.
n	(array, (M, D)) The orders of derivatives that each of the M training points represent, indicating the order of derivative with respect to each of the D dimensions.
T	(array, (M, N)) The transformation matrix applied to the training data. If this is not None, X and n will be N-by- D.
y	(array, (M,)) The M training target values.
err_y	(array, $(M$,$)) The uncorrelated, possibly heteroscedastic uncertainty in the M$ training input values.
K	(array, (M, M)) Covariance matrix between all of the training inputs.
noise_K	(array, (M, M)) Noise portion of the covariance matrix between all of the training inputs. Note that if T is present this is applied between all of the training quadrature points, so additional noise on the transformed observations cannot be inferred.
L	(array, (M, M) Lower-triangular Cholesky decomposition of the total covariance matrix between all of the training inputs.
alpha	(array, (M, 1)) Solution to $K \alpha=y$.
11	(float) Log-posterior density of the model.
diag_facto	(float) The factor of sys.float_info.epsilon which is added to the diagonal of the K matrix to improve stability.
K_up_to_d	atbool) True if no data have been added since the last time the internal state was updated with a call to compute_K_L_alpha_II().
use_hyper	l) Whether or not the derivative of the log-posterior with respect to the hyperparameters should be computed/used.
verbose	(bool) Whether or not to print non-critical, internally-generated warnings.

hyperprior

Combined hyperprior for the kernel, noise kernel and (if present) mean function.

fixed_params

Combined fixed hyperparameter flags for the kernel, noise kernel and (if present) mean function.

params

Combined hyperparameters for the kernel, noise kernel and (if present) mean function.

param_bounds

Combined bounds for the hyperparameters for the kernel, noise kernel and (if present) mean function.

param_names

Combined names for the hyperparameters for the kernel, noise kernel and (if present) mean function.

free_params

Combined free hyperparameters for the kernel, noise kernel and (if present) mean function.

free_param_bounds

Combined free hyperparameter bounds for the kernel, noise kernel and (if present) mean function.
free_param_names
Combined free hyperparameter names for the kernel, noise kernel and (if present) mean function.
add_data (X, y, err_ $y=0, n=0, T=$ None $)$
Add data to the training data set of the GaussianProcess instance.
Parameters \mathbf{X} : array, (M, D)
M input values of dimension D.
\mathbf{y} : array, (M,)
M target values.
err_y : array, $(M$,$) or scalar float, optional$
Non-negative values only. Error given as standard deviation) in the M target values. If err_y is a scalar, the data set is taken to be homoscedastic (constant error). Otherwise, the length of err_y must equal the length of y. Default value is 0 (noiseless observations).
n : array, (M, D) or scalar float, optional
Non-negative integer values only. Degree of derivative for each target. If n is a scalar it is taken to be the value for all points in y. Otherwise, the length of n must equal the length of y. Default value is 0 (observation of target value). If non-integer values are passed, they will be silently rounded.
\mathbf{T} : array, (M, N), optional
Linear transformation to get from latent variables to data in the argument y. When T is passed the argument y holds the transformed quantities $y=T Y(X)$ where y are the observed values of the transformed quantities, T is the transformation matrix and $Y(X)$ is the underlying (untransformed) values of the function to be fit that enter into the transformation. When T is M-by- N and y has M elements, X and n will both be N-byD. Default is None (no transformation).

Raises ValueError

Bad shapes for any of the inputs, negative values for err $_{-} y$ or n.

condense_duplicates()

Condense duplicate points using a transformation matrix.
This is useful if you have multiple non-transformed points at the same location or multiple transformed points that use the same quadrature points.

Won't change the GP if all of the rows of [X, n] are unique. Will create a transformation matrix T if necessary. Note that the order of the points in $[\mathrm{X}, \mathrm{n}]$ will be arbitrary after this operation.

If there are any transformed quantities (i.e., self. T is not None), it will also remove any quadrature points for which all of the weights are zero (even if all of the rows of [X, n] are unique).
remove_outliers (thresh=3, **predict_kwargs)
Remove outliers from the GP with very simplistic outlier detection.
Removes points that are more than thresh * err_y away from the GP mean. Note that this is only very rough in that it ignores the uncertainty in the GP mean at any given point. But you should only be using this as a rough way of removing bad channels, anyways!

Returns the values that were removed and a boolean array indicating where the removed points were.
Parameters thresh : float, optional
The threshold as a multiplier times err_y. Default is 3 (i.e., throw away all 3-sigma points).
**predict_kwargs : optional kwargs
All additional kwargs are passed to predict (). You can, for instance, use this to make it use MCMC to evaluate the mean. (If you don't use MCMC, then the current value of the hyperparameters is used.)
Returns X_bad : array
Input values of the bad points.
y_bad : array
Bad values.
err_y_bad : array
Uncertainties on the bad values.
n_bad : array
Derivative order of the bad values.
bad_idxs : array
Array of booleans with the original shape of X with True wherever a point was taken to be bad and subsequently removed.

T_bad : array
Transformation matrix of returned points. Only returned if T is not None for the instance.
optimize_hyperparameters (method='SLSQP', opt_kwargs=\{\}, verbose=False, random_starts=None, num_proc=None, max_tries=1)
Optimize the hyperparameters by maximizing the log-posterior.
Leaves the GaussianProcess instance in the optimized state.
If scipy.optimize.minimize() is not available (i.e., if your scipy version is older than 0.11.0) then fmin_slsqp () is used independent of what you set for the method keyword.
If use_hyper_deriv is True the optimizer will attempt to use the derivatives of the log-posterior with respect to the hyperparameters to speed up the optimization. Note that only the squared exponential covariance kernel supports hyperparameter derivatives at present.

Parameters method : str, optional
The method to pass to scipy.optimize.minimize(). Refer to that function's docstring for valid options. Default is 'SLSQP'. See note above about behavior with older versions of scipy.
opt_kwargs : dict, optional
Dictionary of extra keywords to pass to scipy.optimize.minimize (). Refer to that function's docstring for valid options. Default is: $\}$.
verbose : bool, optional
Whether or not the output should be verbose. If True, the entire Result object from scipy.optimize.minimize() is printed. If False, status information is only printed if the success flag from minimize () is False. Default is False.
random_starts : non-negative int, optional
Number of times to randomly perturb the starting guesses (distributed according to the hyperprior) in order to seek the global minimum. If None, then num_proc random starts will be performed. Default is None (do number of random starts equal to the number of processors allocated). Note that for random_starts $!=0$, the initial state of the hyperparameters is not actually used.
num_proc: non-negative int or None, optional
Number of processors to use with random starts. If 0, processing is not done in parallel. If None, all available processors are used. Default is None (use all available processors).
max_tries : int, optional

Number of times to run through the random start procedure if a solution is not found. Default is to only go through the procedure once.
predict (Xstar, $n=0$, noise=False, return_std=True, return_cov=False, full_output=False, return_samples=False, num_samples=1, samp_kwargs=\{\}, return_mean_func=False, use_MCMC=False, full_MC=False, rejection_func=None, ddof=1, output_transform=None, ***wargs)
Predict the mean and covariance at the inputs Xstar.
The order of the derivative is given by n. The keyword noise sets whether or not noise is included in the prediction.

Parameters Xstar: array, (M, D)
M test input values of dimension D.
\mathbf{n} : array, (M, D) or scalar, non-negative int, optional
Order of derivative to predict (0 is the base quantity). If n is scalar, the value is used for all points in Xstar. If non-integer values are passed, they will be silently rounded. Default is 0 (return base quantity).
noise : bool, optional
Whether or not noise should be included in the covariance. Default is False (no noise in covariance).
return_std : bool, optional
Set to True to compute and return the standard deviation for the predictions, False to skip this step. Default is True (return tuple of (mean, std)).
return_cov : bool, optional
Set to True to compute and return the full covariance matrix for the predictions. This overrides the return_std keyword. If you want both the standard deviation and covariance matrix pre-computed, use the full_output keyword.
full_output : bool, optional
Set to True to return the full outputs in a dictionary with keys:

mean	mean of GP at requested points
std	standard deviation of GP at requested points
cov	covariance matrix for values of GP at requested points
samp	random samples of GP at requested points (only if return_samples is True)
mean_func	mean function of GP (only if return_mean_func is True)
cov_func	covariance of mean function of GP (zero if not using MCMC)
std_func	standard deviation of mean function of GP (zero if not using MCMC)
mean_without_funanean of GP minus mean function of GP	
cov_without_fun¢	covariance matrix of just the GP portion of the fit
std_without_func	standard deviation of just the GP portion of the fit

return_samples : bool, optional
Set to True to compute and return samples of the GP in addition to computing the mean. Only done if full_output is True. Default is False.
num_samples : int, optional

Number of samples to compute. If using MCMC this is the number of samples per MCMC sample, if using present values of hyperparameters this is the number of samples actually returned. Default is 1 .
samp_kwargs : dict, optional
Additional keywords to pass to draw_sample () if return_samples is True. Default is $\}$.
return_mean_func : bool, optional
Set to True to return the evaluation of the mean function in addition to computing the mean of the process itself. Only done if full_output is True and self.mu is not None. Default is False.
use_MCMC : bool, optional
Set to True to use predict_MCMC () to evaluate the prediction marginalized over the hyperparameters.
full_MC : bool, optional
Set to True to compute the mean and covariance matrix using Monte Carlo sampling of the posterior. The samples will also be returned if full_output is True. The sample mean and covariance will be evaluated after filtering through rejection_func, so conditional means and covariances can be computed. Default is False (do not use full sampling).
rejection_func : callable, optional
Any samples where this function evaluates False will be rejected, where it evaluates True they will be kept. Default is None (no rejection). Only has an effect if full_MC is True.
ddof : int, optional
The degree of freedom correction to use when computing the covariance matrix when full_MC is True. Default is 1 (unbiased estimator).
output_transform: array, ('L', 'M'), optional
Matrix to use to transform the output vector of length M to one of length L. This can, for instance, be used to compute integrals.
**kwargs : optional kwargs
All additional kwargs are passed to predict_MCMC () if use_MCMC is True.
Returns mean : array, (M,)
Predicted GP mean. Only returned if full_output is False.
std : array, (M,)
Predicted standard deviation, only returned if return_std is True, return_cov is False and full_output is False.
cov : array, (M, M)
Predicted covariance matrix, only returned if return_cov is True and full_output is False.
full_output : dict
Dictionary with fields for mean, std, cov and possibly random samples and the mean function. Only returned if full_output is True.

Raises ValueError

If n is not consistent with the shape of Xstar or is not entirely composed of non-negative integers.
plot $(X=$ None, $n=0$, ax=None, envelopes $=[1,3]$, base_alpha $=0.375$, return_prediction=False, return_std=True, full_output=False, plot_kwargs=\{\}, **kwargs)
Plots the Gaussian process using the current hyperparameters. Only for num_dim $<=2$.
Parameters X : array-like (M,) or (M, num_dim), optional
The values to evaluate the Gaussian process at. If None, then 100 points between the minimum and maximum of the data's X are used for a univariate Gaussian process and a 50×50 grid is used for a bivariate Gaussian process. Default is None (use 100 points between min and max).
\mathbf{n} : int or list, optional
The order of derivative to compute. For num_dim=1, this must be an int. For num_dim $=2$, this must be a list of ints of length 2 . Default is 0 (don't take derivative).
ax : axis instance, optional
Axis to plot the result on. If no axis is passed, one is created. If the string 'gca' is passed, the current axis (from plt.gca()) is used. If $\mathrm{X} _$dim $=2$, the axis must be 3 d .

envelopes: list of float, optional

$+/-n *$ sigma envelopes to plot. Default is [1, 3].
base_alpha : float, optional
Alpha value to use for $+/-1$ *sigma envelope. All other envelopes env are drawn with base_alphalenv. Default is 0.375 .
return_prediction : bool, optional
If True, the predicted values are also returned. Default is False.
return_std : bool, optional
If True, the standard deviation is computed and returned along with the mean when return_prediction is True. Default is True.
full_output : bool, optional
Set to True to return the full outputs in a dictionary with keys:

mean	mean of GP at requested points
std	standard deviation of GP at requested points
cov	covariance matrix for values of GP at requested points
samp	random samples of GP at requested points (only if return_sample is True)

plot_kwargs : dict, optional
The entries in this dictionary are passed as kwargs to the plotting command used to plot the mean. Use this to, for instance, change the color, line width and line style.
**kwargs : extra arguments for predict, optional
Extra arguments that are passed to predict ().
Returns ax : axis instance
The axis instance used.
mean : Array, (M,)

Predicted GP mean. Only returned if return_prediction is True and full_output is False.
std : Array, (M,)
Predicted standard deviation, only returned if return_prediction and return_std are True and full_output is False.
full_output : dict
Dictionary with fields for mean, std, cov and possibly random samples. Only returned if return_prediction and full_output are True.
draw_sample (Xstar, $n=0$, num_samp=1, rand_vars=None, rand_type='standard normal', diag_factor=1000.0, method='cholesky', num_eig=None, mean=None, cov=None, modify_sign=None, **kwargs)
Draw a sample evaluated at the given points Xstar.
Note that this function draws samples from the GP given the current values for the hyperparameters (which may be in a nonsense state if you just created the instance or called a method that performs MCMC sampling). If you want to draw random samples from MCMC output, use the return_samples and full_output keywords to predict ().

Parameters Xstar: array, (M, D)
M test input values of dimension D.
\mathbf{n} : array, (M, D) or scalar, non-negative int, optional
Derivative order to evaluate at. Default is 0 (evaluate value).
noise : bool, optional
Whether or not to include the noise components of the kernel in the sample. Default is False (no noise in samples).
num_samp : Positive int, optional
Number of samples to draw. Default is 1 . Cannot be used in conjunction with rand_vars: If you pass both num_samp and rand_vars, num_samp will be silently ignored.
rand_vars : array, (M, P), optional
Vector of random variables u to use in constructing the sample $y_{*}=$ $f_{*}+L u$, where $K=L L^{T}$. If None, values will be produced using numpy.random.multivariate_normal(). This allows you to use pseudo/quasi random numbers generated by an external routine. Note that, when method is 'eig', the eigenvalues are in ascending order. Default is None (use multivariate_normal() directly).
rand_type : \{'standard normal', 'uniform' \}, optional
Type of distribution the inputs are given with.

- 'standard normal': Standard ($m u=0$, sigma $=1$) normal distribution (this is the default)
- 'uniform': Uniform distribution on [0, 1). In this case the required Gaussian variables are produced with inversion.
diag_factor : float, optional
Number (times machine epsilon) added to the diagonal of the covariance matrix prior to computing its Cholesky decomposition. This is necessary as sometimes the decomposition will fail because, to machine precision, the matrix appears to not be positive
definite. If you are getting errors from scipy.linalg.cholesky (), try increasing this an order of magnitude at a time. This parameter only has an effect when using rand_vars. Default value is 1 e 3 .
method : \{'cholesky', 'eig' \}, optional
Method to use for constructing the matrix square root. Default is 'cholesky' (use lowertriangular Cholesky decomposition).
- 'cholesky': Perform Cholesky decomposition on the covariance matrix: $K=L L^{T}$, use L as the matrix square root.
- 'eig': Perform an eigenvalue decomposition on the covariance matrix: $K=Q \Lambda Q^{-1}$, use $Q \Lambda^{1 / 2}$ as the matrix square root.
num_eig : int or None, optional
Number of eigenvalues to compute. Can range from 1 to M (the number of test points). If it is None, then all eigenvalues are computed. Default is None (compute all eigenvalues). This keyword only has an effect if method is 'eig'.
mean : array, $(M$,$) , optional$
If you have pre-computed the mean and covariance matrix, then you can simply pass them in with the mean and cov keywords to save on having to call predict ().
cov : array, (M, M), optional
If you have pre-computed the mean and covariance matrix, then you can simply pass them in with the mean and cov keywords to save on having to call predict ().
modify_sign : \{None, 'left value', 'right value', 'left slope', 'right slope', 'left concavity', 'right concavity'\}, optional

If None (the default), the eigenvectors as returned by scipy.linalg.eigh() are used without modification. To modify the sign of the eigenvectors (necessary for some advanced use cases), set this kwarg to one of the following:

- 'left value': forces the first value of each eigenvector to be positive.
- 'right value': forces the last value of each eigenvector to be positive.
- 'left slope': forces the slope to be positive at the start of each eigenvector.
- 'right slope': forces the slope to be positive at the end of each eigenvector.
- 'left concavity': forces the second derivative to be positive at the start of each eigenvector.
- 'right concavity': forces the second derivative to be positive at the end of each eigenvector.
**kwargs : optional kwargs
All extra keyword arguments are passed to predict () when evaluating the mean and covariance matrix of the GP.

Returns samples: Array (M, P) or (M, num_samp)
Samples evaluated at the M points.

Raises ValueError

If rand_type or method is invalid.
update_hyperparameters (new_params, hyper_deriv_handling='default', exit_on_bounds=True, inf_on_error=True)
Update the kernel's hyperparameters to the new parameters.
This will call compute_K_I_alpha_II () to update the state accordingly.
Note that if this method crashes and the hyper_deriv_handling keyword was used, it may leave use_hyper_deriv in the wrong state.

Parameters new_params : Array or other Array-like, length dictated by kernel
New parameters to use.
hyper_deriv_handling : \{'default', 'value', 'deriv'\}, optional
Determines what to compute and return. If 'default' and use_hyper_deriv is True then the negative log-posterior and the negative gradient of the log-posterior with respect to the hyperparameters is returned. If 'default' and use_hyper_deriv is False or 'value' then only the negative log-posterior is returned. If 'deriv' then only the negative gradient of the log-posterior with respect to the hyperparameters is returned.
exit_on_bounds : bool, optional
If True, the method will automatically exit if the hyperparameters are impossible given the hyperprior, without trying to update the internal state. This is useful during MCMC sampling and optimization. Default is True (don't perform update for impossible hyperparameters).
inf_on_error : bool, optional
If True, the method will return scipy.inf if the hyperparameters produce a linear algebra error upon trying to update the Gaussian process. Default is True (catch errors and return infinity).

Returns -1*II : float
The updated \log posterior.
-1*ll_deriv : array of float, (num_params,)
The gradient of the log posterior. Only returned if use_hyper_deriv is True or hyper_deriv_handling is set to 'deriv'.

compute_K_L_alpha_11()

Compute K, L, alpha and log-likelihood according to the first part of Algorithm 2.1 in R\&W.
Computes K and the noise portion of K using compute_Kij(), computes L using scipy.linalg. cholesky (), then computes alpha as $L . T \backslash(L y y)$.
Only does the computation if K_up_to_date is False - otherwise leaves the existing values.
num_dim
The number of dimensions of the input data.
Returns num_dim: int
The number of dimensions of the input data as defined in the kernel.
compute_Kij (Xi, Xj, ni, nj, noise=False, hyper_deriv=None, $k=$ None $)$
Compute covariance matrix between datasets $X i$ and $X j$.
Specify the orders of derivatives at each location with the ni, nj arrays. The include_noise flag is passed to the covariance kernel to indicate whether noise is to be included (i.e., for evaluation of $K+\sigma I$ versus K_{*}).

If $X j$ is None, the symmetric matrix $K(X, X)$ is formed.

Note that type and dimension checking is NOT performed, as it is assumed the data are from inside the instance and have hence been sanitized by add_data().

Parameters Xi : array, (M, D)
M input values of dimension D.
$\mathbf{X j}$: array, (P, D)
P input values of dimension D.
ni : array, (M, D), non-negative integers
M derivative orders with respect to the $X i$ coordinates.
$\mathbf{n j}$: array, (P, D), non-negative integers
P derivative orders with respect to the $X j$ coordinates.
noise : bool, optional
If True, uses the noise kernel, otherwise uses the regular kernel. Default is False (use regular kernel).
hyper_deriv : None or non-negative int, optional
Index of the hyperparameter to compute the first derivative with respect to. If None, no derivatives are taken. Default is None (no hyperparameter derivatives).
k: Kernel instance, optional
The covariance kernel to used. Overrides noise if present.
Returns Kij: array, (M, P)
Covariance matrix between $X i$ and $X j$.
compute_ll_matrix (bounds, num_pts)
Compute the log likelihood over the (free) parameter space.
Parameters bounds : 2-tuple or list of 2-tuples with length equal to the number of free parameters

Bounds on the range to use for each of the parameters. If a single 2-tuple is given, it will be used for each of the parameters.
num_pts : int or list of ints with length equal to the number of free parameters
If a single int is given, it will be used for each of the parameters.
Returns ll_vals: Array
The log likelihood for each of the parameter possibilities.
param_vals [List of Array] The parameter values used.
sample_hyperparameter_posterior (nwalkers=200, nsamp=500, burn=0, thin=1, num_proc $=$ None, sampler $=$ None, plot_posterior $=$ False, plot_chains=False, sampler_type='ensemble', ntemps $=20$, sampler_a $a=2.0,{ }^{* *}$ plot_kwargs)
Produce samples from the posterior for the hyperparameters using MCMC.
Returns the sampler created, because storing it stops the GP from being pickleable. To add more samples to a previous sampler, pass the sampler instance in the sampler keyword.

Parameters nwalkers : int, optional

The number of walkers to use in the sampler. Should be on the order of several hundred. Default is 200 .
nsamp : int, optional
Number of samples (per walker) to take. Default is 500 .
burn : int, optional
This keyword only has an effect on the corner plot produced when plot_posterior is True and the flattened chain plot produced when plot_chains is True. To perform computations with burn-in, see compute_from_MCMC (). The number of samples to discard at the beginning of the chain. Default is 0 .
thin : int, optional
This keyword only has an effect on the corner plot produced when plot_posterior is True and the flattened chain plot produced when plot_chains is True. To perform computations with thinning, see compute_from_MCMC (). Every thin-th sample is kept. Default is 1 .
num_proc : int or None, optional
Number of processors to use. If None, all available processors are used. Default is None (use all available processors).
sampler: Sampler instance
The sampler to use. If the sampler already has samples, the most recent sample will be used as the starting point. Otherwise a random sample from the hyperprior will be used.
plot_posterior : bool, optional
If True, a corner plot of the posterior for the hyperparameters will be generated. Default is False.
plot_chains : bool, optional
If True, a plot showing the history and autocorrelation of the chains will be produced.
sampler_type : str, optional
The type of sampler to use. Valid options are "ensemble" (affine- invariant ensemble sampler) and "pt" (parallel-tempered ensemble sampler).
ntemps : int, optional
Number of temperatures to use with the parallel-tempered ensemble sampler.
sampler_a : float, optional
Scale of the proposal distribution.
plot_kwargs : additional keywords, optional
Extra arguments to pass to plot_sampler().
compute_from_MCMC $(X, \quad n=0, \quad$ return_mean=True, return_std=True, return_cov=False, return_samples=False, return_mean_func=False, num_samples=1, noise $=$ False, samp_kwargs $=\{ \}$, sampler=None, flat_trace $=$ None, burn=0, thin $=1$, **kwargs)
Compute desired quantities from MCMC samples of the hyperparameter posterior.
The return will be a list with a number of rows equal to the number of hyperparameter samples. The columns depend on the state of the boolean flags, but will be some subset of (mean, stddev, cov, samples),
in that order. Samples will be the raw output of draw_sample (), so you will need to remember to convert to an array and flatten if you want to work with a single sample.

Parameters X : array-like $(M$,$) or (M$, num_dim $)$

The values to evaluate the Gaussian process at.
\mathbf{n} : non-negative int or list, optional
The order of derivative to compute. For num_dim=1, this must be an int. For num_dim $=2$, this must be a list of ints of length 2 . Default is 0 (don't take derivative).
return_mean : bool, optional
If True, the mean will be computed at each hyperparameter sample. Default is True (compute mean).
return_std : bool, optional
If True, the standard deviation will be computed at each hyperparameter sample. Default is True (compute stddev).
return_cov : bool, optional
If True, the covariance matrix will be computed at each hyperparameter sample. Default is True (compute stddev).
return_samples : bool, optional
If True, random sample(s) will be computed at each hyperparameter sample. Default is False (do not compute samples).
num_samples : int, optional
Compute this many samples if return_sample is True. Default is 1 .
noise : bool, optional
If True, noise is included in the predictions and samples. Default is False (do not include noise).
samp_kwargs : dict, optional
If return_sample is True, the contents of this dictionary will be passed as kwargs to draw_sample().
sampler : Sampler instance or None, optional
Sampler instance that has already been run to the extent desired on the hyperparameter posterior. If None, a new sampler will be created with sample_hyperparameter_posterior(). In this case, all extra kwargs will be passed on, allowing you to set the number of samples, etc. Default is None (create sampler).
flat_trace : array-like (nsamp, ndim) or None, optional
Flattened trace with samples of the free hyperparameters. If present, overrides sampler. This allows you to use a sampler other than the ones from emcee, or to specify arbitrary values you wish to evaluate the curve at. Note that this WILL be thinned and burned according to the following two kwargs. "Flat" refers to the fact that you must have combined all chains into a single one. Default is None (use sampler).
burn : int, optional
The number of samples to discard at the beginning of the chain. Default is 0 .
thin : int, optional
Every thin-th sample is kept. Default is 1.
num_proc : int, optional
The number of processors to use for evaluation. This is used both when calling the sampler and when evaluating the Gaussian process. If None, the number of available processors will be used. If zero, evaluation will proceed in parallel. Default is to use all available processors.
**kwargs : extra optional kwargs
All additional kwargs are passed to sample_hyperparameter_posterior().
Returns out : dict
A dictionary having some or all of the fields 'mean', 'std', 'cov' and 'samp'. Each entry is a list of array-like. The length of this list is equal to the number of hyperparameter samples used, and the entries have the following shapes:

mean	(M),
std	(M),
cov	(M, M)
samp	$(M$, num_samples $)$

compute_1_from_MCMC ($X, n=0$, sampler=None, flat_trace $=$ None, burn $=0$, thin $=1, * * k w a r g s)$
Compute desired quantities from MCMC samples of the hyperparameter posterior.
The return will be a list with a number of rows equal to the number of hyperparameter samples. The columns will contain the covariance length scale function.

Parameters X : array-like (M,) or (M, num_dim)

The values to evaluate the Gaussian process at.
\mathbf{n} : non-negative int or list, optional
The order of derivative to compute. For num_dim=1, this must be an int. For num_dim=2, this must be a list of ints of length 2 . Default is 0 (don't take derivative).
sampler : Sampler instance or None, optional
Sampler instance that has already been run to the extent desired on the hyperparameter posterior. If None, a new sampler will be created with sample_hyperparameter_posterior(). In this case, all extra kwargs will be passed on, allowing you to set the number of samples, etc. Default is None (create sampler).
flat_trace : array-like (nsamp, ndim) or None, optional
Flattened trace with samples of the free hyperparameters. If present, overrides sampler. This allows you to use a sampler other than the ones from emcee, or to specify arbitrary values you wish to evaluate the curve at. Note that this WILL be thinned and burned according to the following two kwargs. "Flat" refers to the fact that you must have combined all chains into a single one. Default is None (use sampler).
burn : int, optional
The number of samples to discard at the beginning of the chain. Default is 0 .
thin : int, optional
Every thin-th sample is kept. Default is 1 .
num_proc : int, optional
The number of processors to use for evaluation. This is used both when calling the sampler and when evaluating the Gaussian process. If None, the number of available processors will be used. If zero, evaluation will proceed in parallel. Default is to use all available processors.
**kwargs : extra optional kwargs
All additional kwargs are passed to sample_hyperparameter_posterior().
Returns out : array of float
Length scale function at the indicated points.
compute_w_from_MCMC $(X, n=0$, sampler $=$ None, flat_trace $=$ None, burn $=0$, thin $=1, * * k w a r g s)$
Compute desired quantities from MCMC samples of the hyperparameter posterior.
The return will be a list with a number of rows equal to the number of hyperparameter samples. The columns will contain the warping function.

Parameters X : array-like $(M$,$) or (M$, num_dim)
The values to evaluate the Gaussian process at.
\mathbf{n} : non-negative int or list, optional
The order of derivative to compute. For num_dim=1, this must be an int. For num_dim=2, this must be a list of ints of length 2. Default is 0 (don't take derivative).
sampler : Sampler instance or None, optional
Sampler instance that has already been run to the extent desired on the hyperparameter posterior. If None, a new sampler will be created with sample_hyperparameter_posterior(). In this case, all extra kwargs will be passed on, allowing you to set the number of samples, etc. Default is None (create sampler).
flat_trace : array-like (nsamp, ndim) or None, optional
Flattened trace with samples of the free hyperparameters. If present, overrides sampler. This allows you to use a sampler other than the ones from emcee, or to specify arbitrary values you wish to evaluate the curve at. Note that this WILL be thinned and burned according to the following two kwargs. "Flat" refers to the fact that you must have combined all chains into a single one. Default is None (use sampler).
burn : int, optional
The number of samples to discard at the beginning of the chain. Default is 0 .
thin : int, optional
Every thin-th sample is kept. Default is 1.
num_proc: int, optional
The number of processors to use for evaluation. This is used both when calling the sampler and when evaluating the Gaussian process. If None, the number of available processors will be used. If zero, evaluation will proceed in parallel. Default is to use all available processors.
***wargs : extra optional kwargs
All additional kwargs are passed to sample_hyperparameter_posterior().
Returns out : array of float

Length scale function at the indicated points.
predict_MCMC $(X, d d o f=1$, full_MC=False, rejection_func=None, $* *$ kwargs $)$
Make a prediction using MCMC samples.
This is essentially a convenient wrapper of compute_from_MCMC (), designed to act more or less interchangeably with predict ().
Computes the mean of the GP posterior marginalized over the hyperparameters using iterated expectations. If return_std is True, uses the law of total variance to compute the variance of the GP posterior marginalized over the hyperparameters. If return_cov is True, uses the law of total covariance to compute the entire covariance of the GP posterior marginalized over the hyperparameters. If both return_cov and return_std are True, then both the covariance matrix and standard deviation array will be returned.

Parameters \mathbf{X} : array-like (M, or (M, num_dim)
The values to evaluate the Gaussian process at.
ddof : int, optional
The degree of freedom correction to use when computing the variance. Default is 1 (standard Bessel correction for unbiased estimate).
return_std : bool, optional
If True, the standard deviation is also computed. Default is True.
full_MC : bool, optional
Set to True to compute the mean and covariance matrix using Monte Carlo sampling of the posterior. The samples will also be returned if full_output is True. Default is False (don't use full sampling).
rejection_func : callable, optional
Any samples where this function evaluates False will be rejected, where it evaluates True they will be kept. Default is None (no rejection). Only has an effect if full_MC is True.
ddof : int, optional
**kwargs : optional kwargs
All additional kwargs are passed directly to compute_from_MCMC ().
class gptools.gaussian_process. Constraint (g p, boundary_val=0.0, $n=0$, loc='min', type_='gt', bounds=None)
Bases: object
Implements an inequality constraint on the value of the mean or its derivatives.
Provides a callable such as can be passed to SLSQP or COBYLA to implement the constraint when using scipy.optimize.minimize().
The function defaults implement a constraint that forces the mean value to be positive everywhere.

Parameters gp: GaussianProcess

The GaussianProcess instance to create the constraint on.
boundary_val : float, optional
Boundary value for the constraint. For type_= 'gt', this is the lower bound, for type $=$ ' lt ', this is the upper bound. Default is 0.0 .
\mathbf{n} : non-negative int, optional

Derivative order to evaluate. Default is 0 (value of the mean). Note that non-int values are silently cast to int.
loc : \{ 'min', 'max' \}, float or Array-like of float (num_dim,), optional
Which extreme of the mean to use, or location to evaluate at.

- If 'min', the minimum of the mean (optionally over bounds) is used.
- If 'max', the maximum of the mean (optionally over bounds) is used.
- If a float (valid for num_dim = 1 only) or Array of float, the mean is evaluated at the given X value.

Default is 'min' (use function minimum).
type_: \{'gt', 'lt'\}, optional
What type of inequality constraint to implement.

- If 'gt', a greater-than-or-equals constraint is used.
- If 'lt', a less-than-or-equals constraint is used.

Default is 'gt' (greater-than-or-equals).
bounds : 2-tuple of float or 2-tuple Array-like of float (num_dim,) or None, optional
Bounds to use when loc is 'min' or 'max'.

- If None, the bounds are taken to be the extremes of the training data. For multivariate data, "extremes" essentially means the smallest hypercube oriented parallel to the axes that encapsulates all of the training inputs. (I.e., (gp.X.min (axis=0), gp.X.max (axis=0)))
- If bounds is a 2-tuple, then this is used as (lower, upper) where lower' and upper are Array-like with dimensions (num_dim,).
- If num_dim is 1 then lower and upper can be scalar floats.

Default is None (use extreme values of training data).

Raises TypeError

If $g p$ is not an instance of GaussianProcess.

ValueError

If n is negative.

ValueError

If loc is not 'min', 'max' or an Array-like of the correct dimensions.

ValueError

If type_ is not 'gt' or ' lt '.
ValueError
If bounds is not None or length 2 or if the elements of bounds don't have the right dimensions.
_call__ (params)
Returns a non-negative number if the constraint is satisfied.
Parameters params : Array-like, length dictated by kernel
New parameters to use.

Returns val : float
Value of the constraint. minimize will attempt to keep this non-negative.

4.1.5 gptools.gp_utils module

Provides convenient utilities for working with the classes and results from gptools.
This module specifically contains utilities that need to interact directly with the GaussianProcess object, and hence can present circular import problems when incorporated in the main utils submodule.
gptools.gp_utils.parallel_compute_ll_matrix($g p$, bounds, $\left.n u m _p t s, n u m _p r o c=N o n e\right)$
Compute matrix of the log likelihood over the parameter space in parallel.
Parameters bounds : 2-tuple or list of 2-tuples with length equal to the number of free parameters
Bounds on the range to use for each of the parameters. If a single 2-tuple is given, it will be used for each of the parameters.
num_pts : int or list of ints with length equal to the number of free parameters
The number of points to use for each parameters. If a single int is given, it will be used for each of the parameters.
num_proc : Positive int or None, optional
Number of processes to run the parallel computation with. If set to None, ALL available cores are used. Default is None (use all available cores).
Returns ll_vals : array
The log likelihood for each of the parameter possibilities.
param_vals : list of array
The parameter values used.
gptools.gp_utils.slice_plot(*args, **kwargs)
Constructs a plot that lets you look at slices through a multidimensional array.
Parameters vals : array, (M, D, P, \ldots)
Multidimensional array to visualize.
x_vals_1 : array, (M,)
Values along the first dimension.
x_vals_2 : array, (D,)
Values along the second dimension.
x_vals_3 : array, $(P$,)
Values along the third dimension.
...and so on. At least four arguments must be provided.
names: list of strings, optional
Names for each of the parameters at hand. If None, sequential numerical identifiers will be used. Length must be equal to the number of dimensions of vals. Default is None.
\mathbf{n} : Positive int, optional
Number of contours to plot. Default is 100.

Returns f: Figure
The Matplotlib figure instance created.

Raises GPArgumentError

If the number of arguments is less than 4.
gptools.gp_utils.arrow_respond (slider, event)
Event handler for arrow key events in plot windows.
Pass the slider object to update as a masked argument using a lambda function:

```
lambda evt: arrow_respond(my_slider, evt)
```

Parameters slider : Slider instance associated with this handler.
event : Event to be handled.

4.1.6 gptools.mean module

Provides classes for defining explicit, parametric mean functions.
To provide the necessary hooks to optimize/sample the hyperparameters, your mean function must be wrapped with MeanFunction before being passed to GaussianProcess. The function must have the calling fingerprint fun(X, $n, p 1, p 2, \ldots$), where X is an array with shape $(M, N), n$ is a vector with length D and $p 1, p 2, \ldots$ are the (hyper)parameters of the mean function, given as individual arguments.
class gptools.mean.MeanFunction (fun, num_params=None, initial_params=None, fixed_params=None, param_bounds=None, param_names=None, enforce_bounds=False, hyperprior=None)
Bases: ob ject
Wrapper to turn a function into a form useable by GaussianProcess.
This lets you define a simple function $\operatorname{fun}(X, n, p 1, p 2, \ldots)$ that operates on an (M, D) array X, taking the derivatives indicated by the vector n with length D (one derivative order for each dimension). The function should evaluate this derivative at all points in X, returning an array of length M. MeanFunction takes care of looping over the different derivatives requested by GaussianProcess.

Parameters fun : callable
Must have fingerprint $f u n(X, n, p 1, p 2, \ldots)$ where X is an array with shape $(M, D), n$ is an array of non-negative integers with length D representing the order of derivative orders to take for each dimension and $p 1, p 2, \ldots$ are the parameters of the mean function.
num_params : Non-negative int, optional
Number of parameters in the model. Default is to determine the number of parameters by inspection of fun or the other arguments provided.
initial_params : Array, (num_params,), optional
Initial values to set for the hyperparameters. Default is None, in which case 1 is used for the initial values.
fixed_params : Array of bool, (num_params,), optional
Sets which hyperparameters are considered fixed when optimizing the log likelihood. A True entry corresponds to that element being fixed (where the element ordering is as defined in the class). Default value is None (no hyperparameters are fixed).
param_bounds : list of 2-tuples (num_params,), optional

List of bounds for each of the hyperparameters. Each 2-tuple is of the form (lower‘, upper). If there is no bound in a given direction, it works best to set it to something big like 1e16. Default is $(0.0,1 \mathrm{e} 16)$ for each hyperparameter. Note that this is overridden by the hyperprior keyword, if present.
param_names : list of str (num_params,), optional
List of labels for the hyperparameters. Default is all empty strings.
enforce_bounds : bool, optional
If True, an attempt to set a hyperparameter outside of its bounds will result in the hyperparameter being set right at its bound. If False, bounds are not enforced inside the kernel. Default is False (do not enforce bounds).
hyperprior : JointPrior instance or list, optional
Joint prior distribution for all hyperparameters. Can either be given as a JointPrior instance or a list of num_params callables or rv_frozen instances from scipy.stats, in which case a IndependentJointPrior is constructed with these as the independent priors on each hyperparameter. Default is a uniform PDF on all hyperparameters.
\qquad (X, n, hyper_deriv $=$ None $)$
Evaluate the mean function at the given points with the current parameters.
Parameters X : array, $(N$,$) or (N, D)$
Points to evaluate the mean function at.
\mathbf{n} : array, $(N$,$) or (N, D)$
Derivative orders for each point.
hyper_deriv : int or None, optional
Index of parameter to take derivative with respect to.

```
param_bounds
set_hyperparams (new_params)
```

Sets the free hyperparameters to the new parameter values in new_params.
Parameters new_params : Array or other Array-like, (len(self.params),
New parameter values, ordered as dictated by the docstring for the class.

num_free_params

Returns the number of free parameters.

free_param_idxs

Returns the indices of the free parameters in the main arrays of parameters, etc.

free_params

Returns the values of the free hyperparameters.
Returns free_params: Array
Array of the free parameters, in order.

free_param_bounds

Returns the bounds of the free hyperparameters.
Returns free_param_bounds : Array
Array of the bounds of the free parameters, in order.
free_param_names
Returns the names of the free hyperparameters.
Returns free_param_names: Array
Array of the names of the free parameters, in order.
gptools.mean.constant ($X, n, m u$, hyper_deriv=None)
Function implementing a constant mean suitable for use with MeanFunction.
class gptools.mean. ConstantMeanFunction (**kwargs)
Bases: gptools.mean. MeanFunction
Class implementing a constant mean function suitable for use with GaussianProcess.
All kwargs are passed to MeanFunction. If you do not pass hyperprior or param_bounds, the hyperprior for the mean is taken to be uniform over [-1e3, 1e3].
gptools.mean.mtanh (alpha,z)
Modified hyperbolic tangent function mtanh(z; alpha).
Parameters alpha: float
The core slope of the mtanh.
\mathbf{z} : float or array
The coordinate of the mtanh.
gptools.mean.mtanh_profile ($X, n, x 0$, delta, alpha, h, b, hyper_deriv=None)
Profile used with the mtanh function to fit profiles, suitable for use with MeanFunction.
Only supports univariate data!
Parameters X:array, $(M, 1)$
The points to evaluate at.
\mathbf{n} : array, (1,)
The order of derivative to compute. Only up to first derivatives are supported.
$\mathbf{x 0}$: float
Pedestal center
delta : float
Pedestal halfwidth
alpha: float
Core slope
h : float
Pedestal height
b : float
Pedestal foot
hyper_deriv : int or None, optional
The index of the parameter to take a derivative with respect to.
class gptools.mean.MtanhMeanFunction1d(**kwargs)
Bases: gptools.mean.MeanFunction
Profile with mtanh edge, suitable for use with GaussianProcess.
All kwargs are passed to MeanFunction. If hyperprior and param_bounds are not passed then the hyperprior is taken to be uniform over the following intervals:

x 0	0.98	1.1
delta	0.0	0.1
alpha	-0.5	0.5
h	0	5
b	0	0.5

gptools.mean.linear (X, n, *args, **kwargs)
Linear mean function of arbitrary dimension, suitable for use with MeanFunction.
The form is $m_{0} * X[:, 0]+m_{1} * X[:, 1]+\cdots+b$.
Parameters X: array, (M, D)
The points to evaluate the model at.
\mathbf{n} : array of non-negative int, (D)
The derivative order to take, specified as an integer order for each dimension in X.
*args : num_dim+1 floats
The slopes for each dimension, plus the constant term. Must be of the form $m 0, m 1, \ldots$,
b.
class gptools.mean.LinearMeanFunction (num_dim=1, **kwargs)
Bases: gptools.mean. MeanFunction
Linear mean function suitable for use with GaussianProcess.
Parameters num_dim : positive int, optional
The number of dimensions of the input data. Default is 1.
**kwargs : optional kwargs
All extra kwargs are passed to MeanFunction. If hyperprior and param_bounds are not specified, all parameters are taken to have a uniform hyperprior over [-1e3, 1e3].

4.1.7 gptools.utils module

Provides convenient utilities for working with the classes and results from gptools.

```
class gptools.utils.JointPrior(i=1.0)
    Bases: object
```

Abstract class for objects implementing joint priors over hyperparameters.
In addition to the abstract methods defined in this template, implementations should also have an attribute named bounds which contains the bounds (for a prior with finite bounds) or the $95 \% \%$ interval (for a prior which is unbounded in at least one direction).
__call__(theta, hyper_deriv=None)
Evaluate the prior log-PDF at the given values of the hyperparameters, theta.
Parameters theta: array-like, (num_params,)

The hyperparameters to evaluate the log-PDF at.
hyper_deriv : int or None, optional
If present, return the derivative of the log-PDF with respect to the variable with this index.
random_draw (size $=$ None $)$
Draw random samples of the hyperparameters.
Parameters size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is returned. Default is None.
sample_u (q)
Extract a sample from random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the inverse CDF. To facilitate efficient sampling, this function returns a vector of PPF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed uniformly on $[0,1]$, this function will return corresponding samples for each variable.

Parameters \mathbf{q} : array-like, (num_params,)
Values between 0 and 1 to evaluate inverse CDF at.
elementwise_cdf (p)
Convert a sample to random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the CDF. To facilitate efficient sampling, this function returns a vector of CDF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed according to the prior, this function will return variables uniform on $[0,1]$ corresponding to each variable. This is the inverse operation to sample_u ().

Parameters p:array-like, (num_params,)
Values to evaluate CDF at.
\qquad (other)
Multiply two Joint Prior instances together.
class gptools.utils.CombinedBounds (ll, l2)

Bases: object

Object to support reassignment of the bounds from a combined prior.
Works for any types of arrays.
Parameters 11 : array-like
The first list.
12 : array-like
The second list.
__getitem (pos)
Get the item(s) at pos.
pos can be a basic slice object. But, the method is implemented by turning the internal array-like objects into lists, so only the basic indexing capabilities supported by the list data type can be used.
__setitem__(pos, value)
Set the item at location pos to value.

Only works for scalar indices.
\qquad ()

Get the length of the combined arrays.
__invert__()
Return the elementwise inverse.
__str_()
Get user-friendly string representation.
__repr_()
Get exact string representation.
class gptools.utils.MaskedBounds (a, m)
Bases: object
Object to support reassignment of free parameter bounds.
Parameters a: array
The array to be masked.
\mathbf{m} : array of int
The indices in a which are to be accessible.
__getitem (pos)
Get the item(s) at location pos in the masked array.
__setitem_(pos, value)
Set the item(s) at location pos in the masked array.
len_(()

Get the length of the masked array.
__str__()
Get user-friendly string representation.
__repr_()
Get exact string representation.
class gptools.utils.ProductJointPrior ($p 1, p 2$)
Bases: gptools.utils.JointPrior
Product of two independent priors.

Parameters p1, p2: :py:class:‘JointPrior‘ instances

The two priors to merge.

i

bounds
\qquad (theta, hyper_deriv=None)
Evaluate the prior log-PDF at the given values of the hyperparameters, theta.
The log-PDFs of the two priors are summed.
Parameters theta: array-like, (num_params,)
The hyperparameters to evaluate the log-PDF at.
sample_u (q)
Extract a sample from random variates uniform on $[0,1]$.

For a univariate distribution, this is simply evaluating the inverse CDF. To facilitate efficient sampling, this function returns a vector of PPF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed uniformly on $[0,1]$, this function will return corresponding samples for each variable.

Parameters q: array-like, (num_params,)
Values between 0 and 1 to evaluate inverse CDF at.

elementwise_cdf (p)

Convert a sample to random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the CDF. To facilitate efficient sampling, this function returns a vector of CDF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed according to the prior, this function will return variables uniform on $[0,1]$ corresponding to each variable. This is the inverse operation to sample_u().

Parameters p:array-like, (num_params,)
Values to evaluate CDF at.
random_draw (size $=$ None)
Draw random samples of the hyperparameters.
The outputs of the two priors are stacked vertically.
Parameters size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is returned. Default is None.

```
class gptools.utils.UniformJointPrior(bounds, ub=None, **kwargs)
```

 Bases: gptools.utils.JointPrior
 Uniform prior over the specified bounds.
Parameters bounds : list of tuples, (num_params,)
The bounds for each of the random variables.
$\mathbf{u b}$: list of float, (num_params,), optional
The upper bounds for each of the random variables. If present, bounds is then taken to be a list of float with the lower bounds. This gives UniformJointPrior a similar calling fingerprint as the other JointPrior classes.
_call__(theta, hyper_deriv=None)
Evaluate the prior log-PDF at the given values of the hyperparameters, theta.
Parameters theta : array-like, (num_params,)
The hyperparameters to evaluate the log-PDF at.
sample_u (q)
Extract a sample from random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the inverse CDF. To facilitate efficient sampling, this function returns a vector of PPF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed uniformly on $[0,1]$, this function will return corresponding samples for each variable.

Parameters \mathbf{q} : array of float
Values between 0 and 1 to evaluate inverse CDF at.

elementwise_cdf (p)

Convert a sample to random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the CDF. To facilitate efficient sampling, this function returns a vector of CDF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed according to the prior, this function will return variables uniform on $[0,1]$ corresponding to each variable. This is the inverse operation to sample_u ().

Parameters p:array-like, (num_params,)
Values to evaluate CDF at.
random_draw (size $=$ None $)$
Draw random samples of the hyperparameters.
Parameters size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is returned. Default is None.
class gptools.utils.CoreEdgeJointPrior (bounds, ub=None, **kwargs)
Bases: gptools.utils.UniformJointPrior
Prior for use with Gibbs kernel warping functions with an inequality constraint between the core and edge length scales.
\qquad (theta, hyper_deriv=None)
Evaluate the prior log-PDF at the given values of the hyperparameters, theta.
Parameters theta: array-like, (num_params,)
The hyperparameters to evaluate the log-PDF at.
sample_u (q)
Extract a sample from random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the inverse CDF. To facilitate efficient sampling, this function returns a vector of PPF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed uniformly on $[0,1]$, this function will return corresponding samples for each variable.

Parameters \mathbf{q} : array of float
Values between 0 and 1 to evaluate inverse CDF at.

elementwise_cdf (p)

Convert a sample to random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the CDF. To facilitate efficient sampling, this function returns a vector of CDF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed according to the prior, this function will return variables uniform on $[0,1]$ corresponding to each variable. This is the inverse operation to sample_u().

Parameters p:array-like, (num_params,)
Values to evaluate CDF at.
random_draw (size=None)
Draw random samples of the hyperparameters.
Parameters size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is returned. Default is None.
class gptools.utils.CoreMidEdgeJointPrior (bounds, $u b=$ None, ${ }^{* *} k w a r g s$)
Bases: gptools.utils.UniformJointPrior
Prior for use with Gibbs kernel warping functions with an inequality constraint between the core, mid and edge length scales and the core-mid and mid-edge joins.
__call__(theta, hyper_deriv=None)
Evaluate the prior log-PDF at the given values of the hyperparameters, theta.
Parameters theta : array-like, (num_params,)
The hyperparameters to evaluate the log-PDF at.
sample_u (q)
Extract a sample from random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the inverse CDF. To facilitate efficient sampling, this function returns a vector of PPF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed uniformly on $[0,1]$, this function will return corresponding samples for each variable.

Parameters q: array of float
Values between 0 and 1 to evaluate inverse CDF at.

```
elementwise_cdf (p)
```

Convert a sample to random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the CDF. To facilitate efficient sampling, this function returns a vector of CDF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed according to the prior, this function will return variables uniform on $[0,1]$ corresponding to each variable. This is the inverse operation to sample_u().

Parameters p:array-like, (num_params,)
Values to evaluate CDF at.
random_draw (size $=$ None)
Draw random samples of the hyperparameters.
Parameters size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is returned. Default is None.

```
class gptools.utils.IndependentJointPrior(univariate_priors)
```

 Bases: gptools.utils. JointPrior
 Joint prior for which each hyperparameter is independent.
Parameters univariate_priors : list of callables or rv_frozen, (num_params,)
The univariate priors for each hyperparameter. Entries in this list can either be a callable that takes as an argument the entire list of hyperparameters or a frozen instance of a distribution from scipy.stats.
\qquad (theta, hyper_deriv=None)
Evaluate the prior log-PDF at the given values of the hyperparameters, theta.
Parameters theta : array-like, (num_params,)
The hyperparameters to evaluate the log-PDF at.

bounds

The bounds of the random variable.

Set self. $i=0.95$ to return the 95% interval if this is used for setting bounds on optimizers/etc. where infinite bounds may not be useful.
sample_u (q)
Extract a sample from random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the inverse CDF. To facilitate efficient sampling, this function returns a vector of PPF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed uniformly on $[0,1]$, this function will return corresponding samples for each variable.

Parameters \mathbf{q} : array of float
Values between 0 and 1 to evaluate inverse CDF at.

elementwise_cdf (p)

Convert a sample to random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the CDF. To facilitate efficient sampling, this function returns a vector of CDF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed according to the prior, this function will return variables uniform on $[0,1]$ corresponding to each variable. This is the inverse operation to sample_u().

Parameters p:array-like, (num_params,)
Values to evaluate CDF at.
random_draw (size $=$ None)
Draw random samples of the hyperparameters.
Parameters size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is returned. Default is None.
class gptools.utils.NormalJointPrior (mu, sigma, **kwargs)
Bases: gptools.utils.JointPrior
Joint prior for which each hyperparameter has a normal prior with fixed hyper-hyperparameters.
Parameters mu : list of float, same size as sigma
Means of the hyperparameters.
sigma : list of float
Standard deviations of the hyperparameters.
__call__(theta, hyper_deriv=None)
Evaluate the prior log-PDF at the given values of the hyperparameters, theta.
Parameters theta : array-like, (num_params,)
The hyperparameters to evaluate the log-PDF at.
bounds
The bounds of the random variable.
Set self. $i=0.95$ to return the 95% interval if this is used for setting bounds on optimizers/etc. where infinite bounds may not be useful.
sample_u (q)
Extract a sample from random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the inverse CDF. To facilitate efficient sampling, this function returns a vector of PPF values, one value for each variable. Basically, the idea is that, given a
vector q of num_params values each of which is distributed uniformly on $[0,1]$, this function will return corresponding samples for each variable.

Parameters \mathbf{q} : array of float
Values between 0 and 1 to evaluate inverse CDF at.
elementwise_cdf (p)
Convert a sample to random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the CDF. To facilitate efficient sampling, this function returns a vector of CDF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed according to the prior, this function will return variables uniform on $[0,1]$ corresponding to each variable. This is the inverse operation to sample_u().

Parameters p:array-like, (num_params,)

Values to evaluate CDF at.
random_draw (size=None)
Draw random samples of the hyperparameters.
Parameters size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is returned. Default is None.

```
class gptools.utils.LogNormalJointPrior(mu, sigma, **kwargs)
```


Bases: gptools.utils.JointPrior

Joint prior for which each hyperparameter has a log-normal prior with fixed hyper-hyperparameters.
Parameters mu : list of float, same size as sigma
Means of the logarithms of the hyperparameters.
sigma : list of float
Standard deviations of the logarithms of the hyperparameters.
__call__(theta, hyper_deriv=None)
Evaluate the prior log-PDF at the given values of the hyperparameters, theta.
Parameters theta: array-like, (num_params,)
The hyperparameters to evaluate the log-PDF at.

bounds

The bounds of the random variable.
Set self. $i=0.95$ to return the 95% interval if this is used for setting bounds on optimizers/etc. where infinite bounds may not be useful.
sample_u (q)
Extract a sample from random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the inverse CDF. To facilitate efficient sampling, this function returns a vector of PPF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed uniformly on $[0,1]$, this function will return corresponding samples for each variable.

Parameters \mathbf{q} : array of float
Values between 0 and 1 to evaluate inverse CDF at.

elementwise_cdf (p)

Convert a sample to random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the CDF . To facilitate efficient sampling, this function returns a vector of CDF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed according to the prior, this function will return variables uniform on $[0,1]$ corresponding to each variable. This is the inverse operation to sample_u ().

Parameters \mathbf{p} : array-like, (num_params,)
Values to evaluate CDF at.
random_draw (size $=$ None $)$
Draw random samples of the hyperparameters.
Parameters size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is returned. Default is None.
class gptools.utils. GammaJointPrior (a, b, **kwargs)
Bases: gptools.utils.JointPrior
Joint prior for which each hyperparameter has a gamma prior with fixed hyper-hyperparameters.
Parameters a list of float, same size as b
Shape parameters.
b: list of float
Rate parameters.
__call__(theta, hyper_deriv=None)
Evaluate the prior log-PDF at the given values of the hyperparameters, theta.
Parameters theta: array-like, (num_params,)
The hyperparameters to evaluate the log-PDF at.

bounds

The bounds of the random variable.
Set self. $i=0.95$ to return the 95% interval if this is used for setting bounds on optimizers/etc. where infinite bounds may not be useful.
sample_u (q)
Extract a sample from random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the inverse CDF. To facilitate efficient sampling, this function returns a vector of PPF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed uniformly on $[0,1]$, this function will return corresponding samples for each variable.

Parameters \mathbf{q} : array of float

Values between 0 and 1 to evaluate inverse CDF at.

elementwise_cdf (p)

Convert a sample to random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the CDF. To facilitate efficient sampling, this function returns a vector of CDF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed according to the prior, this function will return variables uniform on $[0,1]$ corresponding to each variable. This is the inverse operation to sample_u ().

Parameters p:array-like, (num_params,)
Values to evaluate CDF at.
random_draw (size=None)
Draw random samples of the hyperparameters.
Parameters size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is returned. Default is None.

```
class gptools.utils.GammaJointPriorAlt (m, s,i=1.0)
```


Bases: gptools.utils.GammaJointPrior

Joint prior for which each hyperparameter has a gamma prior with fixed hyper-hyperparameters.
This is an alternate form that lets you specify the mode and standard deviation instead of the shape and rate parameters.

Parameters \mathbf{m} : list of float, same size as s
Modes
s: list of float
Standard deviations
a
b
class gptools.utils.SortedUniformJointPrior (num_var, lb, ub, **kwargs)
Bases: gptools.utils.JointPrior
Joint prior for a set of variables which must be strictly increasing but are otherwise uniformly-distributed.
Parameters num_var : int
The number of variables represented.
lb : float
The lower bound for all of the variables.
ub : float
The upper bound for all of the variables.
__call_(theta, hyper_deriv=None)
Evaluate the log-probability of the variables.
Parameters theta: array
The parameters to find the log-probability of.

bounds

sample_u (q)
Extract a sample from random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the inverse CDF. To facilitate efficient sampling, this function returns a vector of PPF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed uniformly on $[0,1]$, this function will return corresponding samples for each variable.

Parameters \mathbf{q} : array of float

Values between 0 and 1 to evaluate inverse CDF at.

elementwise_cdf (p)

Convert a sample to random variates uniform on $[0,1]$.
For a univariate distribution, this is simply evaluating the CDF. To facilitate efficient sampling, this function returns a vector of CDF values, one value for each variable. Basically, the idea is that, given a vector q of num_params values each of which is distributed according to the prior, this function will return variables uniform on $[0,1]$ corresponding to each variable. This is the inverse operation to sample_u().

Parameters p:array-like, (num_params,)
Values to evaluate CDF at.
random_draw (size $=$ None $)$
Draw random samples of the hyperparameters.
Parameters size : None, int or array-like, optional
The number/shape of samples to draw. If None, only one sample is returned. Default is None.
gptools.utils.wrap_fmin_slsqp (fun, guess, opt_kwargs=\{\})
Wrapper for fmin_slsqp () to allow it to be called with minimize () -like syntax.
This is included to enable the code to run with scipy versions older than 0.11.0.
Accepts opt_kwargs in the same format as used by scipy.optimize.minimize(), with the additional precondition that the keyword method has already been removed by the calling code.

Parameters fun : callable
The function to minimize.
guess : sequence
The initial guess for the parameters.
opt_kwargs : dict, optional
Dictionary of extra keywords to pass to scipy.optimize.minimize (). Refer to that function's docstring for valid options. The keywords 'jac', 'hess' and 'hessp' are ignored. Note that if you were planning to use $j a c=$ True (i.e., optimization function returns Jacobian) and have set $\operatorname{args}=($ True, $)$ to tell update_hyperparameters () to compute and return the Jacobian this may cause unexpected behavior. Default is: $\}$.
Returns Result : namedtuple
namedtuple that mimics the fields of the Result object returned by scipy.optimize.minimize(). Has the following fields:

status	int	Code indicating the exit mode of the optimizer (imode from fmin_slsqp ())
suc- cess	bool	Boolean indicating whether or not the optimizer thinks a minimum was found.
fun	float	Value of the optimized function (-1*LL).
x	ndar- ray	Optimal values of the hyperparameters.
mes- sage	str	String describing the exit state (smode from fmin_slsqp ())
nit	int	Number of iterations.

Raises ValueError

Invalid constraint type in constraints. (See documentation for scipy.optimize.minimize().)
gptools.utils.fixed_poch (a, n)
Implementation of the Pochhammer symbol $(a)_{n}$ which handles negative integer arguments properly.
Need conditional statement because scipy's impelementation of the Pochhammer symbol is wrong for negative integer arguments. This function uses the definition from http://functions.wolfram.com/GammaBetaErf/Pochhammer/02/

Parameters a : float
The argument.
\mathbf{n} : nonnegative int
The order.
gptools.utils.Kn2Der ($n u, y, n=0$)
Find the derivatives of $K_{\nu}\left(y^{1 / 2}\right)$.
Parameters nu : float
The order of the modified Bessel function of the second kind.
\mathbf{y} : array of float
The values to evaluate at.
\mathbf{n} : nonnegative int, optional
The order of derivative to take.
gptools.utils.yn2Kn2Der ($n u, y, n=0$, tol $=0.0005$, n terms $=1$, $n u _$step $=0.001$)
Computes the function $y^{\nu / 2} K_{\nu}\left(y^{1 / 2}\right)$ and its derivatives.
Care has been taken to handle the conditions at $y=0$.
For $n=0$, uses a direct evaluation of the expression, replacing points where $y=0$ with the appropriate value. For $n>0$, uses a general sum expression to evaluate the expression, and handles the value at $y=0$ using a power series expansion. Where it becomes infinite, the infinities will have the appropriate sign for a limit approaching zero from the right.

Uses a power series expansion around $y=0$ to avoid numerical issues.
Handles integer $n u$ by performing a linear interpolation between values of $n u$ slightly above and below the requested value.

Parameters nu : float
The order of the modified Bessel function and the exponent of y.
\mathbf{y} : array of float
The points to evaluate the function at. These are assumed to be nonegative.
n : nonnegative int, optional
The order of derivative to take. Set to zero (the default) to get the value.
tol : float, optional
The distance from zero for which the power series is used. Default is $5 \mathrm{e}-4$.
nterms : int, optional
The number of terms to include in the power series. Default is 1.
nu_step : float, optional
The amount to vary $n u$ by when handling integer values of $n u$. Default is 0.001 .
gptools.utils.incomplete_bell_poly (n, k, x)
Recursive evaluation of the incomplete Bell polynomial $B_{n, k}(x)$.
Evaluates the incomplete Bell polynomial $B_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)$, also known as the partial Bell polynomial or the Bell polynomial of the second kind. This polynomial is useful in the evaluation of (the univariate) Faa di Bruno's formula which generalizes the chain rule to higher order derivatives.

The implementation here is based on the implementation in: sympy. functions. combinatorial. numbers.bell._be. Following that function's documentation, the polynomial is computed according to the recurrence formula:

$$
B_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)=\sum_{m=1}^{n-k+1} x_{m}\binom{n-1}{m-1} B_{n-m, k-1}\left(x_{1}, x_{2}, \ldots, x_{n-m-k}\right)
$$

The end cases are:
$B_{0,0}=1$
$B_{n, 0}=0$ for $n \geq 1$
$B_{0, k}=0$ for $k \geq 1$
Parameters n: scalar int
The first subscript of the polynomial.
\mathbf{k} : scalar int
The second subscript of the polynomial.
\mathbf{x} : Array of floats, $(p, n-k+1)$
p sets of $n-k+1$ points to use as the arguments to $B_{n, k}$. The second dimension can be longer than required, in which case the extra entries are silently ignored (this facilitates recursion without needing to subset the array x).

Returns result : Array, $(p$,
Incomplete Bell polynomial evaluated at the desired values.
gptools.utils.generate_set_partition_strings (n)
Generate the restricted growth strings for all of the partitions of an n-member set.
Uses Algorithm H from page 416 of volume 4A of Knuth's The Art of Computer Programming. Returns the partitions in lexicographical order.

Parameters n: scalar int, non-negative
Number of (unique) elements in the set to be partitioned.
Returns partitions: list of Array
List has a number of elements equal to the n-th Bell number (i.e., the number of partitions for a set of size n). Each element has length n, the elements of which are the restricted growth strings describing the partitions of the set. The strings are returned in lexicographic order.
gptools.utils.generate_set_partitions (set_)
Generate all of the partitions of a set.
This is a helper function that utilizes the restricted growth strings from generate_set_partition_strings(). The partitions are returned in lexicographic order.

Parameters set_: Array or other Array-like, (m,)
The set to find the partitions of.
Returns partitions : list of lists of Array
The number of elements in the outer list is equal to the number of partitions, which is the len $(m)^{\wedge}$ th Bell number. Each of the inner lists corresponds to a single possible partition. The length of an inner list is therefore equal to the number of blocks. Each of the arrays in an inner list is hence a block.

```
gptools.utils.powerset ([1,2,3]) -> () (1,) (2,)(3,)(1,2) (1,3) (2,3) (1,2,3)
From itertools documentation, https://docs.python.org/2/library/itertools.html.
gptools.utils.unique_rows(arr, return_index=False, return_inverse=False)
Returns a copy of arr with duplicate rows removed.
From Stackoverflow "Find unique rows in numpy.array."
```

Parameters arr : Array, (m, n)
The array to find the unique rows of.
return_index : bool, optional
If True, the indices of the unique rows in the array will also be returned. I.e., unique $=$ $\operatorname{arr}[i d x]$. Default is False (don't return indices).

return_inverse: bool, optional

If True, the indices in the unique array to reconstruct the original array will also be returned. I.e., arr = unique[inv]. Default is False (don't return inverse).
Returns unique : Array, (p, n) where $p<=m$
The array $a r r$ with duplicate rows removed.
gptools.utils.compute_stats (vals, check_nan=False, robust=False, axis=1, plot_QQ=False, bins=15, name=' ')
Compute the average statistics (mean, std dev) for the given values.
Parameters vals: array-like, (M, D)
Values to compute the average statistics along the specified axis of.
check_nan : bool, optional
Whether or not to check for (and exclude) NaN's. Default is False (do not attempt to handle NaN's).
robust : bool, optional
Whether or not to use robust estimators (median for mean, IQR for standard deviation). Default is False (use non-robust estimators).
axis : int, optional
Axis to compute the statistics along. Presently only supported if robust is False. Default is 1 .
plot_QQ : bool, optional
Whether or not a QQ plot and histogram should be drawn for each channel. Default is False (do not draw QQ plots).
bins : int, optional
Number of bins to use when plotting histogram (for plot_QQ=True). Default is 15
name : str, optional
Name to put in the title of the QQ/histogram plot.
Returns mean : ndarray, (M,)
Estimator for the mean of vals.
std : ndarray, (M,)
Estimator for the standard deviation of vals.

Raises NotImplementedError

If axis $!=1$ when robust is True.

NotImplementedError

If plot_QQ is True.
gptools.utils.univariate_envelope_plot (x, mean, std, ax=None, base_alpha=0.375, envelopes $=[1,3], l b=$ None, $u b=$ None, expansion $=10$, ***wargs)
Make a plot of a mean curve with uncertainty envelopes.
gptools.utils.summarize_sampler (sampler, weights=None, burn=0, ci=0.95, chain_mask=None)
Create summary statistics of the flattened chain of the sampler.
The confidence regions are computed from the quantiles of the data.
Parameters sampler : emcee. Sampler instance or array, ($n _t e m p s, n _c h a i n s, n _s a m p, n _d i m$), ($\left.n _c h a i n s, n _s a m p, n _d i m\right)$ or ($n _s a m p, n _d i m$)

The sampler to summarize the chains of.
weights : array, (n _temps, $n _c h a i n s, n_{-}$samp), ($n _$chains, $n _$samp $)$or ($n _$samp, $)$, optional
The weight for each sample. This is useful for post-processing the output from MultiNest sampling, for instance.
burn : int, optional
The number of samples to burn from the beginning of the chain. Default is 0 (no burn).
ci : float, optional
A number between 0 and 1 indicating the confidence region to compute. Default is 0.95 (return upper and lower bounds of the 95% confidence interval).
chain_mask : (index) array, optional
Mask identifying the chains to keep before plotting, in case there are bad chains. Default is to use all chains.

Returns mean : array, (num_params,)
Mean values of each of the parameters sampled.
ci_l : array, (num_params,)
Lower bounds of the $c i^{*} 100 \%$ confidence intervals.
ci_u : array, (num_params,)
Upper bounds of the $c i^{*} 100 \%$ confidence intervals.
gptools.utils.plot_sampler (sampler, weights=None, cutoff_weight=None, labels=None, burn=0, chain_mask=None, bins=50, points=None, covs=None, colors=None, $\quad c i=[0.95], \quad$ plot_samples=False, plot_hist=True, chain_alpha=0.1, temp_idx=0, label_fontsize=14, ticklabel_fontsize $=9$, chain_label_fontsize $=9$, chain_ticklabel_fontsize $=7$, suptitle $=$ None, bottom_sep $=0.075, \quad$ label_chain_y $=$ False, max_chain_ticks=6, max_hist_ticks=None, chain_ytick_pad=2.0, suptitle_space=0.1, fixed_width=None, fixed_height=None, ax_space =0.1, cmap='gray_r', hide_chain_ylabels=False, plot_chains=True)
Plot the results of MCMC sampler (posterior and chains).
Loosely based on triangle.py. Provides extensive options to format the plot.
Parameters sampler : emcee. Sampler instance or array, (n_temps, $n _$chains, $n _$samp, $n _d i m$), ($n _$chains, $n _$samp, $n _d i m$) or ($n _$samp, $n _d i m$)

The sampler to plot the chains/marginals of. Can also be an array of samples which matches the shape of the chain attribute that would be present in a emcee. Sampler instance.
weights : array, ($n _t e m p s, n _c h a i n s, n_{-}$samp), ($n _$chains, $n _$samp $)$or ($n _$samp, $)$, optional
The weight for each sample. This is useful for post-processing the output from MultiNest sampling, for instance.
cutoff_weight : float, optional
If weights and cutoff_weight are present, points with weights < cutoff_weight * weights.max() will be excluded. Default is to plot all points.
labels : list of str, optional
The labels to use for each of the free parameters. Default is to leave the axes unlabeled.
burn : int, optional
The number of samples to burn before making the marginal histograms. Default is zero (use all samples).
chain_mask : (index) array, optional
Mask identifying the chains to keep before plotting, in case there are bad chains. Default is to use all chains.
points : array, $(D$,$) or (N, D)$, optional
Array of point(s) to plot onto each marginal and chain. Default is None.
covs : array, (D, D) or (N, D, D), optional
Covariance matrix or array of covariance matrices to plot onto each marginal. If you do not want to plot a covariance matrix for a specific point, set its corresponding entry to None. Default is to not plot confidence ellipses for any points.
ci : array, (num_ci,), optional
List of confidence intervals to plot for each non-None entry in covs. Default is 0.95 (just plot the 95 percent confidence interval).
plot_samples : bool, optional
If True, the samples are plotted as individual points. Default is False.
chain_alpha : float, optional

The transparency to use for the plots of the individual chains. Setting this to something low lets you better visualize what is going on. Default is 0.1 .
temp_idx : int, optional
Index of the temperature to plot when plotting a emcee.PTSampler. Default is 0 (samples from the posterior).
label_fontsize : float, optional
The font size (in points) to use for the axis labels. Default is 16.
ticklabel_fontsize : float, optional
The font size (in points) to use for the axis tick labels. Default is 10.
chain_label_fontsize : float, optional
The font size (in points) to use for the labels of the chain axes. Default is 10.
chain_ticklabel_fontsize : float, optional
The font size (in points) to use for the chain axis tick labels. Default is 6.
suptitle : str, optional
The figure title to place at the top. Default is no title.
bottom_sep : float, optional
The separation (in relative figure units) between the chains and the marginals. Default is 0.075 .
label_chain_y : bool, optional
If True, the chain plots will have y axis labels. Default is False.
max_chain_ticks : int, optional
The maximum number of y-axis ticks for the chain plots. Default is 6 .
max_hist_ticks : int, optional
The maximum number of ticks for the histogram plots. Default is None (no limit).
chain_ytick_pad : float, optional
The padding (in points) between the y-axis tick labels and the axis for the chain plots.
Default is 2.0.
suptitle_space : float, optional
The amount of space (in relative figure units) to leave for a figure title. Default is 0.1.
fixed_width : float, optional
The desired figure width (in inches). Conflicts with fixed_height.
fixed_height : float, optional
The desired figure height (in inches). Conflicts with fixed_width.
ax_space : float, optional
The w_{-}space and h_{-}space to use. Default is 0.1 .
plot_chains : bool, optional
If True, plot the sampler chains. Default is True.
gptools.utils.plot_sampler_fingerprint(sampler, hyperprior, weights=None, cutoff_weight=None, $\quad n b i n s=N o n e, \quad$ labels=None, burn=0, chain_mask=None, temp_idx=0, points=None, plot_samples=False, sample_color=' k ', point_color=None, point_lw=3, title $=$ '', rot_x_labels=False, figsize=None)
Make a plot of the sampler's "fingerprint": univariate marginal histograms for all hyperparameters.
The hyperparameters are mapped to [0, 1] using hyperprior.elementwise_cdf(), so this can only be used with prior distributions which implement this function.

Returns the figure and axis created.
Parameters sampler : emcee. Sampler instance or array, ($\left.n _t e m p s, n _c h a i n s, ~ n _s a m p, n _d i m\right)$, (n _chains, $n _$samp, $n _d i m$) or ($n _$samp, $n _d i m$)

The sampler to plot the chains/marginals of. Can also be an array of samples which matches the shape of the chain attribute that would be present in a emcee. Sampler instance.
hyperprior : Joint Prior instance
The joint prior distribution for the hyperparameters. Used to map the values to $[0,1]$ so that the hyperparameters can all be shown on the same axis.
weights : array, (n _temps, $n _$chains, $n _$samp $)$, ($n _$chains, $n _$samp $)$or ($n _$samp,), optional
The weight for each sample. This is useful for post-processing the output from MultiNest sampling, for instance.
cutoff_weight : float, optional
If weights and cutoff_weight are present, points with weights < cutoff_weight * weights.max() will be excluded. Default is to plot all points.
nbins : int or array of int, $(D$,$) , optional$
The number of bins dividing $[0,1]$ to use for each histogram. If a single int is given, this is used for all of the hyperparameters. If an array of ints is given, these are the numbers of bins for each of the hyperparameters. The default is to determine the number of bins using the Freedman-Diaconis rule.
labels : array of str, $(D$,$) , optional$
The labels for each hyperparameter. Default is to use empty strings.
burn : int, optional
The number of samples to burn before making the marginal histograms. Default is zero (use all samples).
chain_mask : (index) array, optional
Mask identifying the chains to keep before plotting, in case there are bad chains. Default is to use all chains.
temp_idx : int, optional
Index of the temperature to plot when plotting a emcee.PTSampler. Default is 0 (samples from the posterior).
points : array, $(D$,$) or (N, D)$, optional
Array of point(s) to plot as horizontal lines. Default is None.
plot_samples : bool, optional

If True, the samples are plotted as horizontal lines. Default is False.
sample_color : str, optional
The color to plot the samples in. Default is ' k ', meaning black.
point_color : str or list of str, optional
The color to plot the individual points in. Default is to loop through matplotlib's default color sequence. If a list is provided, it will be cycled through.
point_lw : float, optional
Line width to use when plotting the individual points.
title : str, optional
Title to use for the plot.
rot_x_labels : bool, optional
If True, the labels for the x-axis are rotated 90 degrees. Default is False (do not rotate labels).
figsize : 2-tuple, optional
The figure size to use. Default is to use the matplotlib default.

```
gptools.utils.plot_sampler_cov(sampler, method='corr', weights=None, cutoff_weight=None,
                        labels=None, \(\quad\) burn \(=0, \quad\) chain_mask=None, temp_idx=0,
                        cbar_label=None, title='', rot_x_labels=False, figsize=None,
        xlabel_on_top=True)
```

Make a plot of the sampler's correlation or covariance matrix.
Returns the figure and axis created.
Parameters sampler : emcee. Sampler instance or array, ($n _t e m p s, n_{-}$chains, n_{-}samp, n _dim), (n _chains, $n _s a m p, n _d i m$) or ($n _$samp, $n _d i m$)

The sampler to plot the chains/marginals of. Can also be an array of samples which matches the shape of the chain attribute that would be present in a emcee. Sampler instance.
method : \{ 'corr', 'cov'\}
Whether to plot the correlation matrix ('corr') or the covariance matrix ('cov'). The covariance matrix is often not useful because different parameters have wildly different scales. Default is to plot the correlation matrix.
labels : array of $\operatorname{str},(D$,$) , optional$
The labels for each hyperparameter. Default is to use empty strings.
burn : int, optional
The number of samples to burn before making the marginal histograms. Default is zero (use all samples).
chain_mask : (index) array, optional
Mask identifying the chains to keep before plotting, in case there are bad chains. Default is to use all chains.
temp_idx : int, optional
Index of the temperature to plot when plotting a emcee.PTSampler. Default is 0 (samples from the posterior).
cbar_label : str, optional
The label to use for the colorbar. The default is chosen based on the value of the method keyword.
title : str, optional
Title to use for the plot.
rot_x_labels : bool, optional
If True, the labels for the x -axis are rotated 90 degrees. Default is False (do not rotate labels).
figsize : 2-tuple, optional
The figure size to use. Default is to use the matplotlib default.
xlabel_on_top : bool, optional
If True, the x -axis labels are put on top (the way mathematicians present matrices). Default is True.

4.1.8 Module contents

gptools - Gaussian process regression with support for arbitrary derivatives

Indices and tables

- genindex
- modindex
- search
[R1] J. Snoek, K. Swersky, R. Zemel, R. P. Adams, "Input Warping for Bayesian Optimization of Non-stationary Functions" ICML (2014)
[R2] J. Snoek, K. Swersky, R. Zemel, R. P. Adams, "Input Warping for Bayesian Optimization of Non-stationary Functions" ICML (2014)

```
g
gptools, 82
gptools.error_handling,40
gptools.gaussian_process,41
gptools.gp_utils,59
gptools.kernel,40
gptools.kernel.core, }
gptools.kernel.gibbs,17
gptools.kernel.matern,28
gptools.kernel.noise, 31
gptools.kernel.rational_quadratic, 33
gptools.kernel.squared_exponential,33
gptools.kernel.warping, 35
gptools.mean,60
gptools.utils, 63
```


Index

Symbols

__add__() (gptools.kernel.core.Kernel method), 12
__call__() (gptools.gaussian_process.Constraint method), 58
__call__() (gptools.kernel.core.ArbitraryKernel method), 15
__call__() (gptools.kernel.core.ChainRuleKernel method), 14
__call__() (gptools.kernel.core.Kernel method), 10
__call__() (gptools.kernel.core.MaskedKernel method), 16
__call__() (gptools.kernel.core.ProductKernel method), 13
__call_() (gptools.kernel.core.SumKernel method), 13
__call__() (gptools.kernel.gibbs.BSplineWarp method), 26
__call__() (gptools.kernel.gibbs.GPWarp method), 27
__call__() (gptools.kernel.gibbs.GibbsFunction1dArb method), 18
__call__() (gptools.kernel.gibbs.GibbsKernel1d method), 20
__call__() (gptools.kernel.matern.Matern52Kernel method), 30
__call__() (gptools.kernel.matern.MaternKernel1d method), 29
__call__() (gptools.kernel.noise.DiagonalNoiseKernel method), 32
__call__() (gptools.kernel.noise.ZeroKernel method), 32 __call__() (gptools.kernel.squared_exponential.SquaredEx method), 34
__call__() (gptools.kernel.warping.ISplineWarp method), 38
__call__() (gptools.kernel.warping.WarpedKernel method), 38
__call__() (gptools.kernel.warping.WarpingFunction method), 36
__call_() (gptools.mean.MeanFunction method), 61 __call__() (gptools.utils.CoreEdgeJointPrior method), 67 __call__() (gptools.utils.CoreMidEdgeJointPrior method), 68
__call__() (gptools.utils.GammaJointPrior method), 71
__call__() (gptools.utils.IndependentJointPrior method), 68
__call__() (gptools.utils.JointPrior method), 63
__call_() (gptools.utils.LogNormalJointPrior method), 70
__call__() (gptools.utils.NormalJointPrior method), 69
__call__() (gptools.utils.ProductJointPrior method), 65
__call__() (gptools.utils.SortedUniformJointPrior method), 72
__call_() (gptools.utils.UniformJointPrior method), 66
__getattribute__() (gptools.kernel.core.MaskedKernel method), 16
__getitem_() (gptools.utils.CombinedBounds method), 64
__getitem__() (gptools.utils.MaskedBounds method), 65
__invert__() (gptools.utils.CombinedBounds method), 65
__len_() (gptools.utils.CombinedBounds method), 65
__len_() (gptools.utils.MaskedBounds method), 65
__mul__() (gptools.kernel.core.Kernel method), 12
__mul__() (gptools.utils.JointPrior method), 64
__repr__() (gptools.utils.CombinedBounds method), 65
__repr__() (gptools.utils.MaskedBounds method), 65
__setattr_() (gptools.kernel.core.MaskedKernel method), 16
__setitem__() (gptools.utils.CombinedBounds method), 64
__setitem__() (gptools.utils.MaskedBounds method), 65 peneftial (Meqntpols.utils.CombinedBounds method), 65
__str__() (gptools.utils.MaskedBounds method), 65

A
a (gptools.utils.GammaJointPriorAlt attribute), 72
add_data() (gptools.gaussian_process.GaussianProcess method), 43
ArbitraryKernel (class in gptools.kernel.core), 14 arrow_respond() (in module gptools.gp_utils), 60
B
b (gptools.utils.GammaJointPriorAlt attribute), 72
beta_cdf_warp() (in module gptools.kernel.warping), 37 BetaWarpedKernel (class in gptools.kernel.warping), 39 BinaryKernel (class in gptools.kernel.core), 12
bounds (gptools.utils.GammaJointPrior attribute), 71
bounds (gptools.utils.IndependentJointPrior attribute), 68 bounds (gptools.utils.LogNormalJointPrior attribute), 70 bounds (gptools.utils.NormalJointPrior attribute), 69 bounds (gptools.utils.ProductJointPrior attribute), 65
bounds (gptools.utils.SortedUniformJointPrior attribute), 72
BSplineWarp (class in gptools.kernel.gibbs), 25

C

ChainRuleKernel (class in gptools.kernel.core), 14
CombinedBounds (class in gptools.utils), 64
compute_from_MCMC() (gp-
tools.gaussian_process.GaussianProcess method), 53
compute_K_L_alpha_ll() tools.gaussian_process.GaussianProcess method), 51
compute_Kij() (gptools.gaussian_process.GaussianProcess method), 51
compute_1_from_MCMC() tools.gaussian_process.GaussianProcess method), 55
compute_ll_matrix() (gp-
tools.gaussian_process.GaussianProcess method), 52
compute_stats() (in module gptools.utils), 76
compute_w_from_MCMC() (gp-
tools.gaussian_process.GaussianProcess method), 56
condense_duplicates() tools.gaussian_process.GaussianProcess method), 44
constant() (in module gptools.mean), 62
ConstantMeanFunction (class in gptools.mean), 62
Constraint (class in gptools.gaussian_process), 57
CoreEdgeJointPrior (class in gptools.utils), 67
CoreMidEdgeJointPrior (class in gptools.utils), 67
cubic_bucket_warp() (in module gptools.kernel.gibbs), 22

D

DiagonalNoiseKernel (class in gptools.kernel.noise), 31 double_tanh_warp() (in module gptools.kernel.gibbs), 21 draw_sample() (gptools.gaussian_process.GaussianProcess method), 49

E

elementwise_cdf()
(gptools.utils.CoreEdgeJointPrior method), 67
elementwise_cdf() (gptools.utils.CoreMidEdgeJointPrior method), 68
elementwise_cdf() (gptools.utils.GammaJointPrior method), 71
elementwise_cdf() (gptools.utils.IndependentJointPrior method), 69
elementwise_cdf() (gptools.utils.JointPrior method), 64
elementwise_cdf() (gptools.utils.LogNormalJointPrior method), 70
elementwise_cdf() (gptools.utils.NormalJointPrior method), 70
elementwise_cdf()
(gptools.utils.ProductJointPrior method), 66
elementwise_cdf() (gptools.utils.SortedUniformJointPrior method), 73
elementwise_cdf() (gptools.utils.UniformJointPrior method), 66
enforce_bounds (gptools.kernel.core.BinaryKernel attribute), 12
enforce_bounds (gptools.kernel.warping.WarpedKernel attribute), 39
exp_gauss_warp() (in module gptools.kernel.gibbs), 24

F

fixed_params (gptools.gaussian_process.GaussianProcess attribute), 43
fixed_params (gptools.kernel.core.BinaryKernel attribute), 12
fixed_params (gptools.kernel.warping.WarpedKernel attribute), 39
fixed_poch() (in module gptools.utils), 74
free_param_bounds (gptools.gaussian_process.GaussianProcess attribute), 43
free_param_bounds (gptools.kernel.core.BinaryKernel attribute), 12
free_param_bounds (gptools.kernel.core.Kernel attribute), 11
free_param_bounds (gptools.kernel.warping.WarpedKernel attribute), 39
free_param_bounds (gptools.kernel.warping.WarpingFunction attribute), 37
free_param_bounds (gptools.mean.MeanFunction attribute), 61
free_param_idxs (gptools.kernel.core.Kernel attribute), 11
free_param_idxs (gptools.kernel.warping.WarpingFunction attribute), 36
free_param_idxs (gptools.mean.MeanFunction attribute), 61

```
free_param_names
    tools.gaussian_process.GaussianProcess
    attribute), 43
free_param_names (gptools.kernel.core.BinaryKernel at-
    tribute), 12
free_param_names (gptools.kernel.core.Kernel attribute),
        1 1
free_param_names
        tools.kernel.warping.WarpedKernel attribute),
        39
free_param_names
        tools.kernel.warping.WarpingFunction at-
        tribute), 37
free_param_names (gptools.mean.MeanFunction at-
        tribute), }6
free_params (gptools.gaussian_process.GaussianProcess
        attribute), 43
free_params (gptools.kernel.core.Kernel attribute), 11
free_params (gptools.kernel.warping.WarpedKernel at-
        tribute), 39
free_params (gptools.kernel.warping.WarpingFunction
        attribute), 36
free_params (gptools.mean.MeanFunction attribute), }6
```


G

```
GammaJointPrior (class in gptools.utils), 71
GammaJointPriorAlt (class in gptools.utils), 72
gauss_warp_arb() (in module gptools.kernel.gibbs), 17
GaussianProcess (class in gptools.gaussian_process), 41
generate_set_partition_strings() (in module gptools.utils), 75
generate_set_partitions() (in module gptools.utils), 75
GibbsFunction1dArb (class in gptools.kernel.gibbs), 18
GibbsKernel1d (class in gptools.kernel.gibbs), 19
GibbsKernel1dBSpline (class in gptools.kernel.gibbs), 26
GibbsKernel1dCubicBucket (class in gptools.kernel.gibbs), 23
GibbsKernel1dDoubleTanh (class in gptools.kernel.gibbs), 22
GibbsKernel1dExpGauss (class in gptools.kernel.gibbs), 25
GibbsKernel1dGaussArb (class in gptools.kernel.gibbs), 19
GibbsKernel1dGP (class in gptools.kernel.gibbs), 27
GibbsKernel1dQuinticBucket (class in gptools.kernel.gibbs), 24
GibbsKernel1dTanh (class in gptools.kernel.gibbs), 21
GibbsKernel1dTanhArb (class in gptools.kernel.gibbs), 18
GPArgumentError, 40
GPImpossibleParamsError, 40
gptools (module), 82
gptools.error_handling (module), 40
gptools.gaussian_process (module), 41
```

(gp- gptools.gp_utils (module), 59
gptools.kernel (module), 40
gptools.kernel.core (module), 9
gptools.kernel.gibbs (module), 17
gptools.kernel.matern (module), 28
gptools.kernel.noise (module), 31
gptools.kernel.rational_quadratic (module), 33
gptools.kernel.squared_exponential (module), 33
gptools.kernel.warping (module), 35
gptools.mean (module), 60
gptools.utils (module), 63
GPWarp (class in gptools.kernel.gibbs), 26
H
hyperprior (gptools.gaussian_process.GaussianProcess attribute), 43

I
i (gptools.utils.ProductJointPrior attribute), 65 incomplete_bell_poly() (in module gptools.utils), 75
IndependentJointPrior (class in gptools.utils), 68
ISplineWarp (class in gptools.kernel.warping), 38
ISplineWarpedKernel (class in gptools.kernel.warping), 40

J

JointPrior (class in gptools.utils), 63

K

Kernel (class in gptools.kernel.core), 9
Kn2Der() (in module gptools.utils), 74
L
linear() (in module gptools.mean), 63
linear_warp() (in module gptools.kernel.warping), 37
LinearMeanFunction (class in gptools.mean), 63
LinearWarpedKernel (class in gptools.kernel.warping), 39
LogNormalJointPrior (class in gptools.utils), 70

M

MaskedBounds (class in gptools.utils), 65
MaskedKernel (class in gptools.kernel.core), 16
Matern52Kernel (class in gptools.kernel.matern), 30
matern_function() (in module gptools.kernel.matern), 28
MaternKernel (class in gptools.kernel.matern), 29
MaternKernel1d (class in gptools.kernel.matern), 28
MaternKernelArb (class in gptools.kernel.matern), 28
MeanFunction (class in gptools.mean), 60
$\operatorname{mtanh}()$ (in module gptools.mean), 62
mtanh_profile() (in module gptools.mean), 62
MtanhMeanFunction1d (class in gptools.mean), 62

N

NormalJointPrior (class in gptools.utils), 69 nu (gptools.kernel.matern.MaternKernel attribute), 30
nu (gptools.kernel.matern.MaternKernelArb attribute), 28
num_dim (gptools.gaussian_process.GaussianProcess attribute), 51
num_free_params (gptools.kernel.core.Kernel attribute), 11
num_free_params (gptools.kernel.warping.WarpingFunction attribute), 36
num_free_params (gptools.mean.MeanFunction attribute), 61

0

optimize_hyperparameters() tools.gaussian_process.GaussianProcess method), 45

P

parallel_compute_ll_matrix() (in module gptools.gp_utils), 59
param_bounds (gptools.gaussian_process.GaussianProcess attribute), 43
param_bounds (gptools.kernel.core.Kernel attribute), 10
param_bounds (gptools.kernel.warping.WarpingFunction attribute), 36
param_bounds (gptools.mean.MeanFunction attribute), 61
param_names (gptools.gaussian_process.GaussianProcess attribute), 43
param_names (gptools.kernel.warping.WarpedKernel attribute), 39
params (gptools.gaussian_process.GaussianProcess attribute), 43
params (gptools.kernel.core.BinaryKernel attribute), 12
params (gptools.kernel.warping.WarpedKernel attribute), 39
plot() (gptools.gaussian_process.GaussianProcess method), 48
plot_sampler() (in module gptools.utils), 77
plot_sampler_cov() (in module gptools.utils), 81
plot_sampler_fingerprint() (in module gptools.utils), 79
powerset() (in module gptools.utils), 76
predict() (gptools.gaussian_process.GaussianProcess method), 46
predict_MCMC() (gptools.gaussian_process.GaussianProce method), 57
ProductJointPrior (class in gptools.utils), 65
ProductKernel (class in gptools.kernel.core), 13

Q

quintic_bucket_warp() (in module gptools.kernel.gibbs), 23

R

random_draw() (gptools.utils.CoreEdgeJointPrior method), 67
random_draw() (gptools.utils.CoreMidEdgeJointPrior method), 68
random_draw() (gptools.utils.GammaJointPrior method), 72
random_draw() (gptools.utils.IndependentJointPrior method), 69
random_draw() (gptools.utils.JointPrior method), 64
random_draw() (gptools.utils.LogNormalJointPrior method), 71
random_draw() (gptools.utils.NormalJointPrior method), 70
random_draw() (gptools.utils.ProductJointPrior method), 66
random_draw() (gptools.utils.SortedUniformJointPrior method), 73
random_draw() (gptools.utils.UniformJointPrior method), 67
RationalQuadraticKernel (class in gptools.kernel.rational_quadratic), 33
remove_outliers() (gptools.gaussian_process.GaussianProcess method), 44
S
sample_hyperparameter_posterior()
(gptools.gaussian_process.GaussianProcess method), 52
sample_u() (gptools.utils.CoreEdgeJointPrior method), 67
sample_u() (gptools.utils.CoreMidEdgeJointPrior method), 68
sample_u() (gptools.utils.GammaJointPrior method), 71
sample_u() (gptools.utils.IndependentJointPrior method), 69
sample_u() (gptools.utils.JointPrior method), 64
sample_u() (gptools.utils.LogNormalJointPrior method), 70
sample_u() (gptools.utils.NormalJointPrior method), 69
sample_u() (gptools.utils.ProductJointPrior method), 65
sample_u() (gptools.utils.SortedUniformJointPrior method), 72
sample_u() (gptools.utils.UniformJointPrior method), 66
set_hyperparams() (gptools.kernel.core.BinaryKernel method), 12
set_hyperparams() (gptools.kernel.core.Kernel method), 11
set_hyperparams()
(gp-
tools.kernel.warping.WarpedKernel method), 39
set_hyperparams()
(gp-
tools.kernel.warping.WarpingFunction
method), 36
set_hyperparams() (gptools.mean.MeanFunction
method), 61
slice_plot() (in module gptools.gp_utils), 59
SortedUniformJointPrior (class in gptools.utils), 72
SquaredExponentialKernel (class in gptools.kernel.squared_exponential), 33
SumKernel (class in gptools.kernel.core), 13
summarize_sampler() (in module gptools.utils), 77

T

tanh_warp() (in module gptools.kernel.gibbs), 20
tanh_warp_arb() (in module gptools.kernel.gibbs), 17

U

UniformJointPrior (class in gptools.utils), 66
unique_rows() (in module gptools.utils), 76
univariate_envelope_plot() (in module gptools.utils), 77
update_hyperparameters() (gp-
tools.gaussian_process.GaussianProcess
method), 50
W
w_func() (gptools.kernel.warping.WarpedKernel method), 38
WarpedKernel (class in gptools.kernel.warping), 38
WarpingFunction (class in gptools.kernel.warping), 35
wrap_fmin_slsqp() (in module gptools.utils), 73
Y
yn2Kn2Der() (in module gptools.utils), 74
Z
ZeroKernel (class in gptools.kernel.noise), 32

