gptools Documentation
Release 0.2.2

Mark Chilenski

October 08, 2016

Contents

1 Overview

gptools.kernel package

2 Kernels

3 Notes

4 Contents

4.1 gptoolspackage

4.1.1 Subpackages
412 Submodules
4.1.3 gptools.error_handlingmodule
4.1.4 gptools.gaussian_process module
4.1.5 gptools.gp_utilsmodule
4.1.6 gptoolssmeanmodule
4.1.7 gptoolsutilsmodule00 oL
4.1.8 Modulecontents

5 Indices and tables
Bibliography

Python Module Index

O O O &

gptools Documentation, Release 0.2.2

Source home: https://github.com/markchil/gptools
Releases: https://pypi.python.org/pypi/gptools/

Installation is as simple as:

pip install gptools

A comprehensive demo is provided at https://github.com/markchil/gptools/blob/master/demo/demo.py, with extensive
comments showing how the code functions on real data (also hosted on the github). This should be consulted in
parallel with this manual.

Contents 1

https://github.com/markchil/gptools
https://pypi.python.org/pypi/gptools/
https://github.com/markchil/gptools/blob/master/demo/demo.py

gptools Documentation, Release 0.2.2

2 Contents

CHAPTER 1

Overview

gptools is a Python package that provides a convenient, powerful and extensible implementation of Gaussian pro-
cess regression (GPR). Central to gptools‘ implementation is support for derivatives and their variances. Further-
more, the implementation supports the incorporation of arbitrary linearly transformed quantities into the GP.

There are two key classes:
* GaussianProcess is the main class to represent a GP.

e Kernel (and its many subclasses) represents a covariance kernel, and must be provided when constructing a
GaussianProcess. Separate kernels to describe the underlying signal and the noise are supported.

A third class, JointPrior, allows you to construct a hyperprior of arbitrary complexity to dictate how the hyperpa-
rameters are handled.

Creating a Gaussian process is as simple as:

import gptools
k = gptools.SquaredExponentialKernel ()
gp = gptools.GaussianProcess (k)

But, the default bounds on the hyperparameters are very wide and can cause the optimizer/MCMC sampler to fail. So,
it is usually a better idea to define the covariance kernel as:

k = gptools.SquaredExponentialKernel (param_bounds=[(0, 1le3), (0, 100)])

You will have to pick appropriate numbers by inspecting the typical range of your data.

Furthermore, you can include an explicit mean function by passing the appropriate MeanFunct ion instance into the
mu keyword:

gp = gptools.GaussianProcess (k, mu=gptools.LinearMeanFunction())

This will enable you to perform inference (both empirical and full Bayes) for the hyperparameters of the mean function.
Essentially, got ool s can perform nonlinear Bayesian regression with a Gaussian process fit to the residuals.

You then add the training data using the add_data () method:

‘gp.add_data(x, y, err_y=stddev_y)

Here, err_y is the 1o uncertainty on the observations y. For exact values, simply omit this keyword. Adding a
derivative observation is as simple as specifying the derivative order with the n keyword:

|gp.add_data (0, 0, n=1)

This will force the slope at x = 0 to be exactly zero. Quantities that represent an arbitrary linear transformation of the
“basic” observations can be added by specifying the T keyword:

gptools Documentation, Release 0.2.2

‘gp.add_data(x, y, T=T)

This will add the value(s) y = TY(x) to the training data, where here Y represents the “basic” (untransformed)
observations and y represents the transformed observations. This also supports the err_y and n keywords. Here, err_y
is the error on the transformed quantity y. n applies to the latent variables Y (z).

Once the GP has been populated with training data, there are two approaches supported to handle the hyperparameters.

The simplest approach is to use an empirical Bayes approach and compute the maximum a posteriori (MAP) estimate.
This is accomplished using the opt imize hyperparameters () method of the GaussianProcess instance:

gp.optimize_hyperparameters ()

This will randomly start the optimizer at points distributed according to the hyperprior several times in order to ensure
that the global maximum is obtained. If you have a machine with multiple cores, these random starts will be performed
in parallel. You can set the number of starts using the random_starts keyword, and you can set the number of processes
used using the num_proc keyword.

For a more complete accounting of the uncertainties in the model, you can choose to use a fully Bayesian approach
by using Markov chain Monte Carlo (MCMC) techniques to produce samples of the hyperposterior. The samples are
produced directly with sample hyperparameter_posterior (), though it will typically be more convenient
to simply call predict () with the use_MCMC keyword set to True.

In order to make predictions, use the predict () method:

y_star, err_y_star = gp.predict (x_star)

By default, the mean and standard deviation of the GP posterior are returned. To compute only the mean and save
some time, set the refurn_std keyword to False. To make predictions of derivatives, set the n keyword. To make a
prediction of a linearly transformed quantity, set the output_transform keyword.

For a convenient wrapper for applying gptools to multivariate data, see profiletools at
https://github.com/markchil/profiletools

4 Chapter 1. Overview

https://github.com/markchil/profiletools

CHAPTER 2

Kernels

A number of kernels are provided to allow many types of data to be fit:

DiagonalNoiseKernel implements homoscedastic noise. The noise is tied to a specific derivative order.
This allows you to, for instance, have noise on your observations but have noiseless derivative constraints,
or to have different noise levels for observations and derivatives. Note that you can also specify potentially
heteroscedastic noise explicitly when adding data to the process.

SquaredExponentialKernel implements the SE kernel which is infinitely differentiable.

MaternKernel implements the entire Matern class of covariance functions, which are characterized by a
hyperparameter v. A process having the Matern kernel is only mean-square differentiable for derivative order
n < v. Note that this class does not support arbitrary derivatives at this point. If you need this feature, try using
MaternKernelArb, but note that this is very slow!

Matern52Kernel implements a specialized Matern kernel with v = g which efficiently supports Oth and st
derivatives.

RationalQuadraticKernel implements the rational quadratic kernel, which is a scale mixture over SE
kernels.

GibbsKernelld and its subclasses implements the Gibbs kernel, which is a nonstationary form of the SE
kernel.

MaskedKernel creates a kernel that only operates on a subset of dimensions. Use this along with the sum
and product operations to create kernels that encode different properties in different dimensions.

ArbitraryKernel creates a kernel with an arbitrary covariance function and computes the derivatives as
needed using mpmath to perform numerical differentiation. Naturally, this is very slow but is useful to let you
explore the properties of arbitrary kernels without having to write a complete implementation.

In most cases, these kernels have been constructed in a way to allow inputs of arbitrary dimension. Each dimension has
a length scale hyperparameter that can be separately optimized over or held fixed. Arbitrary derivatives with respect
to each dimension can be taken, including computation of the covariance for those observations.

Other kernels can be implemented by extending the Kernel class. Furthermore, kernels may be added or multiplied
together to yield a new, valid kernel.

gptools Documentation, Release 0.2.2

6 Chapter 2. Kernels

CHAPTER 3

Notes

gptools has been developed and tested on Python 2.7 and scipy 0.14.0. It may work just as well on other versions,

but has not been tested.

If you find this software useful, please be sure to cite it:
M.A. Chilenski et al. 2015 Nucl. Fusion 55 023012
http://stacks.iop.org/0029-5515/55/023012

http://stacks.iop.org/0029-5515/55/023012

gptools Documentation, Release 0.2.2

8 Chapter 3. Notes

CHAPTER 4

Contents

4.1 gptools package

4.1.1 Subpackages

gptools.kernel package

Submodules

gptools.kernel.core module

Core kernel classes: contains the base Kernel class and helper subclasses.

class gptools.kernel.core.Kernel (num_dim=1, num_params=0, initial_params=None,
fixed_params=None, param_bounds=None,
param_names=None, enforce_bounds=False, hyper-

prior=None)
Bases: object

Covariance kernel base class. Not meant to be explicitly instantiated!
Initialize the kernel with the given number of input dimensions.

When implementing an isotropic covariance kernel, the covariance length scales should be the last num_dim
elements in params.

Parameters num_dim : positive int

Number of dimensions of the input data. Must be consistent with the X and Xstar values
passed to the GaussianProcess you wish to use the covariance kernel with. Default
is 1.

num_params : Non-negative int
Number of parameters in the model.
initial_params : Array or other Array-like, (num_params,), optional

Initial values to set for the hyperparameters. Default is None, in which case 1 is used
for the initial values.

fixed_params : Array or other Array-like of bool, (num_params,), optional

gptools Documentation, Release 0.2.2

Sets which hyperparameters are considered fixed when optimizing the log likelihood.
A True entry corresponds to that element being fixed (where the element ordering is as
defined in the class). Default value is None (no hyperparameters are fixed).

param_bounds : list of 2-tuples (num_params,), optional

List of bounds for each of the hyperparameters. Each 2-tuple is of the form (lower,
upper). If there is no bound in a given direction, it works best to set it to something big
like 1el16. Default is (0.0, 1e16) for each hyperparameter. Note that this is overridden
by the hyperprior keyword, if present.

param_names : list of str (num_params,), optional
List of labels for the hyperparameters. Default is all empty strings.
enforce_bounds : bool, optional

If True, an attempt to set a hyperparameter outside of its bounds will result in the hy-
perparameter being set right at its bound. If False, bounds are not enforced inside the
kernel. Default is False (do not enforce bounds).

hyperprior : JointPrior instance or list, optional

Joint prior distribution for all hyperparameters. Can either be given as a JointPrior
instance or a list of num_params callables or py:class:rv_frozen instances from
scipy.stats, in which case a IndependentJointPrior is constructed with
these as the independent priors on each hyperparameter. Default is a uniform PDF on
all hyperparameters.

Raises ValueError
If num_dim is not a positive integer or the lengths of the input vectors are inconsistent.
GPArgumentError

if fixed_params is passed but initial_params is not.

Attributes
num_free_params Returns the number of free parameters.
free param_idxs Returns the indices of the free parameters in the main arrays of parameters, etc.
free_params Returns the values of the free hyperparameters.

free_param_bounds Returns the bounds of the free hyperparameters.
free_param_names Returns the names of the free hyperparameters.

num_params | (int) Number of parameters.

num_dim (int) Number of dimensions.

param_names | (list of str, (num_params,)) List of the labels for the hyperparameters.

en- (bool) If True, do not allow hyperparameters to be set outside of their bounds.
force_bounds

params (Array of float, (num_params,)) Array of parameters.

fixed_params | (Array of bool, (num_params,)) Array of booleans indicated which parameters in
paramns are fixed.

hyperprior (JointPrior instance) Joint prior distribution for the hyperparameters.

param_bounds| (CombinedBounds) The bounds on the hyperparameters. Actually a getter method with
a property decorator.

param_bounds

10 Chapter 4. Contents

gptools Documentation, Release 0.2.2

__call__ (Xi, Xj, ni, nj, hyper_deriv=None, symmetric=False)
Evaluate the covariance between points Xi and Xj with derivative order ni, nj.

Note that this method only returns the covariance — the hyperpriors and potentials stored in this kernel
must be applied separately.

Parameters Xi: Matrix or other Array-like, (M, D)
M inputs with dimension D.
Xj : Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
nj : Matrix or other Array-like, (M, D)
M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional

The index of the hyperparameter to compute the first derivative with respect to. If None,
no derivatives are taken. Default is None (no hyperparameter derivatives).

symmetric : bool, optional
Whether or not the input Xi, Xj are from a symmetric matrix. Default is False.
Returns Kij: Array, (M,)

Covariances for each of the M Xi, Xj pairs.
Notes

THIS IS ONLY A METHOD STUB TO DEFINE THE NEEDED CALLING FINGERPRINT!

set_hyperparams (new_params)
Sets the free hyperparameters to the new parameter values in new_params.

Parameters new_params : Array or other Array-like, (len(self.free_params),)
New parameter values, ordered as dictated by the docstring for the class.

num_free_params
Returns the number of free parameters.

free_param idxs
Returns the indices of the free parameters in the main arrays of parameters, etc.

free_params
Returns the values of the free hyperparameters.

Returns free params: Array
Array of the free parameters, in order.

free_param bounds
Returns the bounds of the free hyperparameters.

Returns free_param_bounds : Array

Array of the bounds of the free parameters, in order.

4.1.

gptools package 11

gptools Documentation, Release 0.2.2

free_param names
Returns the names of the free hyperparameters.

Returns free_param_names : Array
Array of the names of the free parameters, in order.

___add__ (other)
Add two Kernels together.

Parameters other : Kernel
Kernel to be added to this one.
Returns sum : SumKernel
Instance representing the sum of the two kernels.

__mul__ (other)
Multiply two Kernels together.

Parameters other : Kernel
Kernel to be multiplied by this one.
Returns prod : ProductKernel
Instance representing the product of the two kernels.

class gptools.kernel.core.BinaryKernel (k/, k2)
Bases: gptools.kernel.core.Kernel

Abstract class for binary operations on kernels (addition, multiplication, etc.).

Parameters k1, k2 : Kernel instances to be combined

Notes

k1 and k2 must have the same number of dimensions.

enforce_bounds
Boolean indicating whether or not the kernel will explicitly enforce the bounds defined by the hyperprior.

fixed params

free_param bounds
Returns the bounds of the free hyperparameters.

Returns free_param_bounds : Array
Array of the bounds of the free parameters, in order.

free_param names
Returns the names of the free hyperparameters.

Returns free_param_names : Array
Array of the names of the free parameters, in order.
params

set_hyperparams (new_params)
Set the (free) hyperparameters.

Parameters new_params : Array or other Array-like

12 Chapter 4. Contents

gptools Documentation, Release 0.2.2

New values of the free parameters.
Raises ValueError
If the length of new_params is not consistent with self.params.

class gptools.kernel.core.SumKernel (k/, k2)
Bases: gptools.kernel.core.BinaryKernel

The sum of two kernels.

__call__ (*args, **kwargs)
Evaluate the covariance between points Xi and Xj with derivative order ni, nj.

Parameters Xi: Matrix or other Array-like, (M, D)

M inputs with dimension D.

Xj : Matrix or other Array-like, (M, D)
M inputs with dimension D.

ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.

nj : Matrix or other Array-like, (M, D)
M derivative orders for set j.

symmetric : bool, optional

Whether or not the input Xi, Xj are from a symmetric matrix. Default is False.

Returns Kij: Array, (M,)
Covariances for each of the M Xi, Xj pairs.

class gptools.kernel.core.ProductKernel (k/, k2)
Bases: gptools.kernel.core.BinaryKernel

The product of two kernels.

__call__ (Xi, Xj, ni, nj, **kwargs)
Evaluate the covariance between points Xi and Xj with derivative order ni, nj.

Parameters Xi: Matrix or other Array-like, (M, D)

M inputs with dimension D.

Xj : Matrix or other Array-like, (M, D)
M inputs with dimension D.

ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.

nj : Matrix or other Array-like, (M, D)
M derivative orders for set j.

symmetric : bool, optional

Whether or not the input Xi, Xj are from a symmetric matrix. Default is False.

Returns Kij: Array, (M,)

Covariances for each of the M Xi, Xj pairs.

4.1. gptools package

13

gptools Documentation, Release 0.2.2

Raises NotImplementedError

If the hyper_deriv keyword is given and is not None.

class gptools.kernel.core.ChainRuleKernel (num_dim=1, num_params=0, ini-
tial_params=None, fixed_params=None,
param_bounds=None, param_names=None,

enforce_bounds=False, hyperprior=None)
Bases: gptools.kernel.core.Kernel

Abstract class for the common methods in creating kernels that require application of Faa di Bruno’s formula.
Implementing classes should provide the following methods:

*_compute_k(self, tau): Should return the value of k(tau) at the given values of tau, but without multiplying
by sigma_f. This is done separately for efficiency.

o_compute_y(self, tau, return_r212=False): Should return the “inner form” y(tau) to use with Faa di Bruno’s
formula. If return_r212 is True, should also return the r2[2 matrix from self._compute_r212(tau).

o_compute_dk_dy(self, y, n): Should compute the n‘th derivative of the kernel ‘k with respect to y at the
locations y.

*_compute_dy_dtau(self, tau, b, r212): Should compute the derivatives of y with respect to the elements of
tau as indicated in b.

__call__ (Xi, Xj, ni, nj, hyper_deriv=None, symmetric=False)
Evaluate the covariance between points Xi and Xj with derivative order ni, nj.

Parameters Xi: Matrix or other Array-like, (M, D)
M inputs with dimension D.
Xj : Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
nj : Matrix or other Array-like, (M, D)
M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional

The index of the hyperparameter to compute the first derivative with respect to. If
None, no derivatives are taken. Hyperparameter derivatives are not supported at this
point. Default is None.

symmetric : bool
Whether or not the input Xi, Xj are from a symmetric matrix. Default is False.
Returns Kij: Array, (M,)
Covariances for each of the M Xi, Xj pairs.
Raises NotImplementedError
If the hyper_deriv keyword is not None.

class gptools.kernel.core.ArbitraryKernel (cov_func, num_dim=1, num_proc=0,

num_params=None, **kwargs)
Bases: gptools.kernel.core.Kernel

Covariance kernel from an arbitrary covariance function.

14 Chapter 4. Contents

gptools Documentation, Release 0.2.2

Computes derivatives using mpmath.diff () and is hence in general much slower than a hard-coded imple-
mentation of a given kernel.

Parameters num_dim : positive int

Number of dimensions of the input data. Must be consistent with the X and Xstar values
passed to the GaussianProcess you wish to use the covariance kernel with.

cov_func : callable, takes >= 2 args

Covariance function. Must take arrays of Xi and Xj as the first two arguments. The
subsequent (scalar) arguments are the hyperparameters. The number of parameters is
found by inspection of cov_func itself, or with the num_params keyword.

num_proc : int or None, optional

Number of procs to use in evaluating covariance derivatives. 0 means to do it in serial,
None means to use all available cores. Default is O (serial evaluation).

num_params : int or None, optional

Number of hyperparameters. If None, inspection will be used to infer the number of
hyperparameters (but will fail if you used clever business with *args, etc.). Default is
None (use inspection to find argument count).

**kwargs

All other keyword parameters are passed to Kerne .

Attributes

cov_func | (callable) The covariance function

num_proc | (non-negative int) Number of processors to use in evaluating covariance derivatives. 0 means
serial.

__call__ (Xi, Xj, ni, nj, hyper_deriv=None, symmetric=False)
Evaluate the covariance between points Xi and Xj with derivative order ni, nj.

Parameters Xi: Matrix or other Array-like, (M, D)
M inputs with dimension D.
Xj : Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
nj : Matrix or other Array-like, (M, D)
M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional

The index of the hyperparameter to compute the first derivative with respect to. If
None, no derivatives are taken. Hyperparameter derivatives are not supported at this
point. Default is None.

symmetric : bool, optional
Whether or not the input Xi, Xj are from a symmetric matrix. Default is False.

Returns Kij: Array, (M,)

4.1.

gptools package 15

gptools Documentation, Release 0.2.2

Covariances for each of the M Xi, Xj pairs.
Raises NotImplementedError
If the hyper_deriv keyword is not None.

class gptools.kernel.core.MaskedKernel (base, total_dim=2, mask=[0], scale=None)
Bases: gptools.kernel.core.Kernel

Creates a kernel that is only masked to operate on certain dimensions, or has scaling/shifting.

This can be used, for instance, to put a squared exponential kernel in one direction and a Matern kernel in the
other.

Overrides __getattribute () and ___setattr__ () to make all setting/accessing go to the base ker-
nel.

Parameters base : Kernel instance
The Kernel to apply in the dimensions specified in mask.
total_dim : int, optional
The total number of dimensions the masked kernel should have. Default is 2.
mask : list or other array-like, optional

1d list of indices of dimensions X to include when passing to the base kernel. Length
must be base.num_dim. Default is [0] (i.e., just pass the first column of X to a univariate
base kernel).

scale : list or other array-like, optional

1d list of scale factors to apply to the elements in Xi, Xj. Default is ones. Length must
be equal to 2‘base.num_dim°.

__getattribute__ (name)
Gets all attributes from the base kernel.

The exceptions are ‘base’, ‘mask’, ‘maskC’, ‘num_dim’, ‘scale’ and any special method (i.e., a
method/attribute having leading and trailing double underscores), which are taken from MaskedKernel.

___setattr__ (name, value)
Sets all attributes in the base kernel.

The exceptions are ‘base’, ‘mask’, ‘maskC’, ‘num_dim’, ‘scale’ and any special method (i.e., a
method/attribute having leading and trailing double underscores), which are set in MaskedKernel.

__call__ (Xi, Xj, ni, nj, **kwargs)
Evaluate the covariance between points Xi and Xj with derivative order ni, nj.

Note that in the argument specifications, D is the total_dim specified in the constructor (i.e., num_dim for
the MaskedKernel instance itself).

Parameters Xi: Matrix or other Array-like, (M, D)
M inputs with dimension D.
Xj : Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.

nj : Matrix or other Array-like, (M, D)

16 Chapter 4. Contents

gptools Documentation, Release 0.2.2

M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional

The index of the hyperparameter to compute the first derivative with respect to. If None,
no derivatives are taken. Default is None (no hyperparameter derivatives).

symmetric : bool, optional
Whether or not the input Xi, Xj are from a symmetric matrix. Default is False.
Returns Kij: Array, (M,)

Covariances for each of the M Xi, Xj pairs.

gptools.kernel.gibbs module

Provides classes and functions for creating SE kernels with warped length scales.

gptools.kernel.gibbs.tanh_warp_arb (X, /I, 12, lw, x0)
Warps the X coordinate with the tanh model

Chtl - T — T
= 5 tanh »

l

Parameters X : Array, (M,) or scalar float
M locations to evaluate length scale at.
11 : positive float
Small-X saturation value of the length scale.
12 : positive float
Large-X saturation value of the length scale.
Iw : positive float
Length scale of the transition between the two length scales.
x0 : float
Location of the center of the transition between the two length scales.
Returns 1: Array, (M,) or scalar float
The value of the length scale at the specified point.

gptools.kernel.gibbs.gauss_warp_arb (X, [/, [2, Iw, x0)
Warps the X coordinate with a Gaussian-shaped divot.

I=1, — (I — o) exp (—41n2(X;;O>2>
Parameters X : Array, (M,) or scalar float
M locations to evaluate length scale at.
11 : positive float
Global value of the length scale.
12 : positive float

Pedestal value of the length scale.

4.1. gptools package 17

gptools Documentation, Release 0.2.2

Iw : positive float
Width of the dip.
x0 : float
Location of the center of the dip in length scale.
Returns 1: Array, (M,) or scalar float
The value of the length scale at the specified point.

class gptools.kernel.gibbs.GibbsFunctionldArb (warp_function)
Bases: object

Wrapper class for the Gibbs covariance function, permits the use of arbitrary warping.

The covariance function is given by

i 20(x)l() 1/2e (x —2')?
=== xp - ")

2(z) + () P\ e re@)
Parameters warp_function : callable

The function that warps the length scale as a function of X. Must have the fingerprint
Xi, 11, 12, Iw, x0).

__call__ (Xi, Xj, sigmaf, 11, 12, Iw, x0)
Evaluate the covariance function between points Xi and Xj.

Parameters Xi, Xj: Array, mpf or scalar float

Points to evaluate covariance between. If they are Array, scipy functions are used,
otherwise mpmath functions are used.

sigmaf : scalar float
Prefactor on covariance.
11, 12, Iw, x0 : scalar floats
Parameters of length scale warping function, passed to warp_function.
Returns k: Array ormpf
Covariance between the given points.

class gptools.kernel.gibbs.GibbsKernelldTanhArb (**kwargs)
Bases: gptools.kernel.core.ArbitraryKernel

Gibbs warped squared exponential covariance function in 1d.

Computes derivatives using mpmath.diff () and is hence in general much slower than a hard-coded imple-
mentation of a given kernel.

The covariance function is given by

Warps the length scale using a hyperbolic tangent:

:ll+l2 _ll—lgtanha)‘—xo

l
2 2 L

The order of the hyperparameters is:

18 Chapter 4. Contents

gptools Documentation, Release 0.2.2

0 | sigmaf | Amplitude of the covariance function

1|1 Small-X saturation value of the length scale.

2 |12 Large-X saturation value of the length scale.

3| 1w Length scale of the transition between the two length scales.

4 | x0 Location of the center of the transition between the two length scales.

Parameters **kwargs
All parameters are passed to Kernel.
class gptools.kernel.gibbs.GibbsKernelldGaussArb (**kwargs)
Bases: gptools.kernel.core.ArbitraryKernel
Gibbs warped squared exponential covariance function in 1d.

Computes derivatives using mpmath.diff () and is hence in general much slower than a hard-coded imple-
mentation of a given kernel.

The covariance function is given by

By 2A(x)l(z') \? . (z — a')?

= —_— X —_——
12(z) + () P\ 2@ + 2@

Warps the length scale using a gaussian:

X — 20)?
= ll — (ll 712)6Xp (41H2(l20)>

w

The order of the hyperparameters is:

0 | sigmaf | Amplitude of the covariance function

1|11 Global value of the length scale.

2 |12 Pedestal value of the length scale.

3 1w Width of the dip.

4 | x0 Location of the center of the dip in length scale.

Parameters **kwargs
All parameters are passed to Kernel.
class gptools.kernel.gibbs.GibbsKernelld (I_func, num_params=None, **kwargs)
Bases: gptools.kernel.core.Kernel
Univariate Gibbs kernel with arbitrary length scale warping for low derivatives.

The covariance function is given by

The derivatives are hard-coded using expressions obtained from Mathematica.
Parameters 1 _func : callable

Function that dictates the length scale warping and its derivative. Must have fingerprint
(x, n, pl, p2, ...) where pI is element one of the kernel’s parameters (i.e., element zero
is skipped).

num_params : int, optional

4.1. gptools package 19

gptools Documentation, Release 0.2.2

The number of parameters of the length scale function. If not passed, introspection
will be used to determine this. This will fail if you have used the *args syntax in your
function definition. This count should include sigma_f, even though it is not passed to
the length scale function.

*Fkwargs
All remaining arguments are passed to Kernel.

__call__ (Xi, Xj, ni, nj, hyper_deriv=None, symmetric=False)
Evaluate the covariance between points Xi and Xj with derivative order ni, nj.

Parameters Xi: Matrix or other Array-like, (M, D)
M inputs with dimension D.
Xj : Matrix or other Array-like, (M, D)
M inputs with dimension D.
ni : Matrix or other Array-like, (M, D)
M derivative orders for set i.
nj : Matrix or other Array-like, (M, D)
M derivative orders for set j.
hyper_deriv : Non-negative int or None, optional

The index of the hyperparameter to compute the first derivative with respect to. If
None, no derivatives are taken. Hyperparameter derivatives are not supported at this
point. Default is None.

symmetric : bool, optional
Whether or not the input Xi, Xj are from a symmetric matrix. Default is False.
Returns Kij: Array, (M,)
Covariances for each of the M Xi, Xj pairs.
Raises NotImplementedError
If the hyper_deriv keyword is not None.

gptools.kernel.gibbs.tanh_warp (x, n,ll, 2, Iw, x0)
Implements a tanh warping function and its derivative.

:l1+12 _l1—lztanh$—$0

! 2 2 Lo

Parameters x : float or array of float
Locations to evaluate the function at.
n: int
Derivative order to take. Used for ALL of the points.
11 : positive float
Left saturation value.
12 : positive float
Right saturation value.

Iw : positive float

20 Chapter 4. Contents

gptools Documentation, Release 0.2.2

Transition width.
x0 : float
Transition location.
Returns 1: float or array
Warped length scale at the given locations.
Raises NotImplementedError
Ifn>1.

class gptools.kernel.gibbs.GibbsKernelldTanh (**kwargs)
Bases: gptools.kernel.gibbs.GibbsKernelld

Gibbs warped squared exponential covariance function in 1d.
Uses hard-coded implementation up to first derivatives.

The covariance function is given by

Warps the length scale using a hyperbolic tangent:

I +1 Iy —1 -
l= 1t b 2 tanh L0
2 2 lw
The order of the hyperparameters is:

0 | sigmaf | Amplitude of the covariance function
1|1 Small-X saturation value of the length scale.
2 |12 Large-X saturation value of the length scale.
3| 1Iw Length scale of the transition between the two length scales.
4 | x0 Location of the center of the transition between the two length scales.

Parameters **kwargs
All parameters are passed to Kernel.
gptools.kernel.gibbs.double_tanh_warp (x, n, Icore, Imid, ledge, la, Ib, xa, xb)
Implements a sum-of-tanh warping function and its derivative.
T — g T — T

+ btanh
a b

[= atanh

Parameters x : float or array of float
Locations to evaluate the function at.
n: int
Derivative order to take. Used for ALL of the points.
Icore : float
Core length scale.
Imid : float
Intermediate length scale.

ledge : float

4.1. gptools package 21

gptools Documentation, Release 0.2.2

Edge length scale.
la : positive float
Transition of first tanh.
Ib : positive float
Transition of second tanh.
xa : float
Transition of first tanh.
xb : float
Transition of second tanh.
Returns 1: float or array
Warped length scale at the given locations.
Raises NotImplementedError
Ifn>1.

class gptools.kernel.gibbs.GibbsKernelldDoubleTanh (**kwargs)
Bases: gptools.kernel.gibbs.GibbsKernelld

Gibbs warped squared exponential covariance function in 1d.
Uses hard-coded implementation up to first derivatives.

The covariance function is given by

Warps the length scale using two hyperbolic tangents:

r—T xr—x
% + btanh b
a b

[= atanh

The order of the hyperparameters is:

0 | sigmaf | Amplitude of the covariance function
1 | lcore Core length scale

2 | Imid Intermediate length scale

3 | ledge Edge length scale

4 | 1a Width of first tanh

511b Width of second tanh

6 | xa Center of first tanh

7 | xb Center of second tanh

Parameters **kwargs
All parameters are passed to Kernel.
gptools.kernel.gibbs.cubic_bucket_warp (x, n,ll, 12,13, x0, wl, w2, w3)
Warps the length scale with a piecewise cubic “bucket” shape.
Parameters x : float or array-like of float

Locations to evaluate length scale at.

22 Chapter 4. Contents

gptools Documentation, Release 0.2.2

n : non-negative int

Derivative order to evaluate. Only first derivatives are supported.
11 : positive float

Length scale to the left of the bucket.
12 : positive float

Length scale in the bucket.
13 : positive float

Length scale to the right of the bucket.
x0 : float

Location of the center of the bucket.
w1 : positive float

Width of the left side cubic section.
w2 : positive float

Width of the bucket.
w3 : positive float

Width of the right side cubic section.

class gptools.kernel.gibbs.GibbsKernelldCubicBucket (**kwargs)
Bases: gptools.kernel.gibbs.GibbsKernelld

Gibbs warped squared exponential covariance function in 1d.
Uses hard-coded implementation up to first derivatives.

The covariance function is given by

Warps the length scale using a “bucket” function with cubic joins.

The order of the hyperparameters is:

0 | sigmaf | Amplitude of the covariance function
1|11 Length scale to the left of the bucket.
2 112 Length scale in the bucket.

3113 Length scale to the right of the bucket.
4 | x0 Location of the center of the bucket.

5| wl Width of the left side cubic section.

6 | w2 Width of the bucket.

7| w3 Width of the right side cubic section.

Parameters **kwargs
All parameters are passed to Kernel.
gptools.kernel.gibbs.quintic_bucket_warp (x, n,ll, 12,13, x0, wl, w2, w3)
Warps the length scale with a piecewise quintic “bucket” shape.

Parameters x : float or array-like of float

4.1. gptools package 23

gptools Documentation, Release 0.2.2

Locations to evaluate length scale at.
n : non-negative int

Derivative order to evaluate. Only first derivatives are supported.
11 : positive float

Length scale to the left of the bucket.
12 : positive float

Length scale in the bucket.
13 : positive float

Length scale to the right of the bucket.
x0 : float

Location of the center of the bucket.
w1 : positive float

Width of the left side quintic section.
w2 : positive float

Width of the bucket.
w3 : positive float

Width of the right side quintic section.

class gptools.kernel.gibbs.GibbsKernelldQuinticBucket (**kwargs)
Bases: gptools.kernel.gibbs.GibbsKernelld

Gibbs warped squared exponential covariance function in 1d.
Uses hard-coded implementation up to first derivatives.

The covariance function is given by

Warps the length scale using a “bucket” function with quintic joins.

The order of the hyperparameters is:

0 | sigmaf | Amplitude of the covariance function
111 Length scale to the left of the bucket.
2 |12 Length scale in the bucket.

3113 Length scale to the right of the bucket.
4 | x0 Location of the center of the bucket.

5| wl Width of the left side quintic section.
6 | w2 Width of the bucket.

7| w3 Width of the right side quintic section.

Parameters **kwargs

All parameters are passed to Kernel.

gptools.kernel.gibbs.exp_gauss_warp (X, n, [0, *msb)
Length scale function which is an exponential of a sum of Gaussians.

24 Chapter 4. Contents

gptools Documentation, Release 0.2.2

The centers and widths of the Gaussians are free parameters.

The length scale function is given by

N
[=lpexp (Z eta; exp (—

i=1

rac{(x-mu_i)"2}{2sigma_i"2} ight) ight)
The number of parameters is equal to the three times the number of Gaussians plus 1 (for lp). This
function is inspired by what Gibbs used in his PhD thesis.
Parameters X : 1d or 2d array of float
The points to evaluate the function at. If 2d, it should only have one column (but
this is not checked to save time).
n [int] The derivative order to compute. Used for all X.
10 [float] The covariance length scale at the edges of the domain.
*msb [floats] Means, standard deviations and weights for each Gaussian, in that order.
class gptools.kernel.gibbs.GibbsKernelldExpGauss (n_gaussians, **kwargs)
Bases: gptools.kernel.gibbs.GibbsKernelld
Gibbs warped squared exponential covariance function in 1d.
Uses hard-coded implementation up to first derivatives.

The covariance function is given by

Warps the length scale using an exponential of Gaussian basis functions.

The order of the hyperparameters is:

0 | sigmaf | Amplitude of the covariance function.

10 Length far away from the Gaussians.
mul Mean of first Gaussian.
mu2 And so on for all Gaussians...

sigmal | Width of first Gaussian.
sigma2 | And so on for all Gaussians...
betal Amplitude of first Gaussian.
beta2 And so on for all Gaussians...

~N| N | W~

Parameters n_gaussians : int
The number of Gaussian basis functions to use.
*Fkwargs
All keywords are passed to Kernel.
class gptools.kernel.gibbs.BSplineWarp (k=3)
Bases: object
Length scale function which is a B-spline.

The degree is fixed at creation, the knot locations and coefficients are free parameters.

4.1. gptools package 25

gptools Documentation, Release 0.2.2

Parameters K : int, optional
The polynomial degree to use. Default is 3 (cubic).

__call_ (X, n, *C)
Evaluate the length scale function with the given knots and coefficients.

If X is 2d, uses the first column.
Parameters X : array of float, (N,)
The points to evaluate the length scale function at.
n:int
The derivative order to compute.
*tC : 2M + k - 1 floats
The M knots followed by the M + k - I coefficients to use.

class gptools.kernel.gibbs.GibbsKernelldBSpline (nt, k=3, **kwargs)
Bases: gptools.kernel.gibbs.GibbsKernelld

Gibbs warped squared exponential covariance function in 1d.
Uses hard-coded implementation up to first derivatives.

The covariance function is given by

Warps the length scale using a B-spline with free knots but fixed order.

You should always put fixed boundary knots at or beyond the edge of your domain, otherwise the length scale
will go to zero. You should always use hyperpriors which keep the coefficients positive, otherwise the length
scale can go to zero/be negative.

The order of the hyperparameters is:

0 | sigmaf | Amplitude of the covariance function.

1| tl First knot locations.

2|2 And so on for all nt knots...

3| Cl1 First coefficient.

4| C2 And so on for all nt + k - I coefficients...

Parameters nt : int
Number of knots to use. Should be at least two (at the edges of the domain of interest).
k : int, optional
The polynomial degree to use. Default is 3 (cubic).
**kwargs
All keywords are passed to Kernel.
class gptools.kernel.gibbs.GPWarp (npts, k=None)
Bases: object
Length scale function which is a Gaussian process.

Parameters npts : int

26 Chapter 4. Contents

gptools Documentation, Release 0.2.2

The number of points the GP’s value will be specified on.
k : Kernel instance, optional

The covariance kernel to use for the GP. The default is to use a
SquaredExponentialKernel with fixed oy (since it does not matter here)
and broad bounds on [;.

__call__ (X, n, *hpXy)
Evaluate the length scale.

Parameters X : array of float
The points to evaluate the length scale at.
n: int
The order of derivative to compute.
*hpXy : floats

The free hyperparameters of the GP, then the points to set the value at, then the values
to use.

class gptools.kernel.gibbs.GibbsKernelldGP (npts, k=None, **kwargs)
Bases: gptools.kernel.gibbs.GibbsKernelld

Gibbs warped squared exponential covariance function in 1d.
Uses hard-coded implementation up to first derivatives.

The covariance function is given by

L (2@ 1/26X (@ —a)?
~\Z@) + B Pl @ +e@)
Warps the length scale using a Gaussian process which interpolates the values specified at a set number of points.

Both the values and the locations of the points can be treated as free parameters.

You should try to pick a hyperprior which keeps the outer points close to the edge of the domain, as otherwise
the Gaussian process will try to go to zero there. You should put a hyperprior on the values at the points which
keeps them positive, otherwise unphysical length scales will result.

The order of the hyperparameters is:

0